1
|
Juszczak K, Szczepankiewicz W, Walczak K. Synthesis and Primary Activity Assay of Novel Benitrobenrazide and Benserazide Derivatives. Molecules 2024; 29:629. [PMID: 38338374 PMCID: PMC10856005 DOI: 10.3390/molecules29030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Schiff bases attract research interest due to their applications in chemical synthesis and medicinal chemistry. In recent years, benitrobenrazide and benserazide containing imine moiety have been synthesized and characterized as promising inhibitors of hexokinase 2 (HK2), an enzyme overexpressed in most cancer cells. Benserazide and benitrobenrazide possess a common structural fragment, a 2,3,4-trihydroxybenzaldehyde moiety connected through a hydrazone or hydrazine linker acylated on an N' nitrogen atom by serine or a 4-nitrobenzoic acid fragment. To avoid the presence of a toxicophoric nitro group in the benitrobenrazide molecule, we introduced common pharmacophores such as 4-fluorophenyl or 4-aminophenyl substituents. Modification of benserazide requires the introduction of other endogenous amino acids instead of serine. Herein, we report the synthesis of benitrobenrazide and benserazide analogues and preliminary results of inhibitory activity against HK2 evoked by these structural changes. The derivatives contain a fluorine atom or amino group instead of a nitro group in BNB and exhibit the most potent inhibitory effects against HK2 at a concentration of 1 µM, with HK2 inhibition rates of 60% and 54%, respectively.
Collapse
Affiliation(s)
| | | | - Krzysztof Walczak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (K.J.); (W.S.)
| |
Collapse
|
2
|
Hooshmand SE, Zhang W. Ugi Four-Component Reactions Using Alternative Reactants. Molecules 2023; 28:molecules28041642. [PMID: 36838630 PMCID: PMC9961709 DOI: 10.3390/molecules28041642] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The Ugi four-component reaction (Ugi-4CR) undoubtedly is the most prominent multicomponent reaction (MCRs) that has sparked organic chemists' interest in the field. It has been widely used in the synthesis of diverse heterocycle molecules such as potential drugs, natural product analogs, pseudo peptides, macrocycles, and functional materials. The Ugi-4CRs involve the use of an amine, an aldehyde or ketone, an isocyanide, and a carboxylic acid to produce an α-acetamido carboxamide derivative, which has significantly advanced the field of isocyanide-based MCRs. The so-called intermediate nitrilium ion could be trapped by a nucleophile such as azide, N-hydroxyphthalimide, thiol, saccharin, phenol, water, and hydrogen sulfide instead of the original carboxylic acid to allow for a wide variety of Ugi-type reactions to occur.β In addition to isocyanide, there are alternative reagents for the other three components: amine, isocyanide, and aldehyde or ketone. All these alternative components render the Ugi reaction an aptly diversity-oriented synthesis of a myriad of biologically active molecules and complex scaffolds. Consequently, this review will delve deeper into alternative components used in the Ugi MCRs, particularly over the past ten years.
Collapse
Affiliation(s)
- Seyyed Emad Hooshmand
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993893973, Iran
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
- Correspondence: ; Tel.: +1-617-287-6147
| |
Collapse
|
3
|
Anugu N, Thunga S, Poshala S, Kokatla HP. N-Oxide-Induced Ugi Reaction: A Rapid Access to Quinoline-C2-amino Amides via Deoxygenative C(sp 2)-H Functionalization. J Org Chem 2022; 87:10435-10440. [PMID: 35849086 DOI: 10.1021/acs.joc.2c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A logic-based replacement of the carboxylic acid component of the Ugi reaction by quinoline N-oxides has been developed. In this approach, the carboxylic isostere, quinoline N-oxide, plays a vital role by shifting the equilibria toward the product side with irreversible addition onto the C2-position of the N-oxide. Thus, aldehydes react with amines, isocyanides, and quinoline N-oxides to furnish quinoline four-component Ugi adducts. The unique reactivity of N-oxides with Ugi components opens an efficient synthetic route for the preparation of biologically active compounds.
Collapse
Affiliation(s)
- Naveenkumar Anugu
- Department of Chemistry, National Institute of Technology Warangal Warangal, Telangana-506004, India
| | - Sanjeeva Thunga
- Department of Chemistry, National Institute of Technology Warangal Warangal, Telangana-506004, India
| | - Soumya Poshala
- Department of Chemistry, National Institute of Technology Warangal Warangal, Telangana-506004, India
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal Warangal, Telangana-506004, India
| |
Collapse
|
4
|
Agouram N, El Hadrami EM, Bentama A. 1,2,3-Triazoles as Biomimetics in Peptide Science. Molecules 2021; 26:2937. [PMID: 34069302 PMCID: PMC8156386 DOI: 10.3390/molecules26102937] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023] Open
Abstract
Natural peptides are an important class of chemical mediators, essential for most vital processes. What limits the potential of the use of peptides as drugs is their low bioavailability and enzymatic degradation in vivo. To overcome this limitation, the development of new molecules mimicking peptides is of great importance for the development of new biologically active molecules. Therefore, replacing the amide bond in a peptide with a heterocyclic bioisostere, such as the 1,2,3-triazole ring, can be considered an effective solution for the synthesis of biologically relevant peptidomimetics. These 1,2,3-triazoles may have an interesting biological activity, because they behave as rigid link units, which can mimic the electronic properties of amide bonds and show bioisosteric effects. Additionally, triazole can be used as a linker moiety to link peptides to other functional groups.
Collapse
Affiliation(s)
- Naima Agouram
- Laboratory of Applied Organic Chemistry, Faculty of Science and Technology, Sidi Mohammed Ben Abdellah University, Immouzer Road, Fez 30050, Morocco; (E.M.E.H.); (A.B.)
| | | | | |
Collapse
|
5
|
Zhu Y, Tao Y. Sequence-controlled and sequence-defined polypeptoids via the Ugi reaction: synthesis and sequence-driven properties. Polym Chem 2021. [DOI: 10.1039/d1py00658d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ugi reaction offers opportunities to facilely access unprecedented sequence control and sequence-driven properties in polypeptoids.
Collapse
Affiliation(s)
- Yinuo Zhu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun 130022, People's Republic of China
| |
Collapse
|
6
|
Fouad MA, Abdel-Hamid H, Ayoup MS. Two decades of recent advances of Ugi reactions: synthetic and pharmaceutical applications. RSC Adv 2020; 10:42644-42681. [PMID: 35514898 PMCID: PMC9058431 DOI: 10.1039/d0ra07501a] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/24/2020] [Indexed: 12/30/2022] Open
Abstract
Multicomponent reactions (MCRs) are powerful synthetic tools in which more than two starting materials couple with each other to form multi-functionalized compounds in a one-pot process, the so-called "tandem", "domino" or "cascade" reaction, or utilizing an additional step without changing the solvent, the so-called a sequential-addition procedure, to limit the number of synthetic steps, while increasing the complexity and the molecular diversity, which are highly step-economical reactions. The Ugi reaction, one of the most common multicomponent reactions, has recently fascinated chemists with the high diversity brought by its four- or three-component-based isonitrile. The Ugi reaction has been introduced in organic synthesis as a novel, efficient and useful tool for the preparation of libraries of multifunctional peptides, natural products, and heterocyclic compounds with stereochemistry control. In this review, we highlight the recent advances of the Ugi reaction in the last two decades from 2000-2019, mainly in the synthesis of linear or cyclic peptides, heterocyclic compounds with versatile ring sizes, and natural products, as well as the enantioselective Ugi reactions. Meanwhile, the applications of these compounds in pharmaceutical trials are also discussed.
Collapse
Affiliation(s)
- Manar Ahmed Fouad
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Hamida Abdel-Hamid
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| | - Mohammed Salah Ayoup
- Department of Chemistry, Faculty of Science, Alexandria University Alexandria 21321 Egypt
| |
Collapse
|
7
|
Samarasimhareddy M, Shamir M, Shalev DE, Hurevich M, Friedler A. A Rapid and Efficient Building Block Approach for Click Cyclization of Peptoids. Front Chem 2020; 8:405. [PMID: 32509731 PMCID: PMC7248394 DOI: 10.3389/fchem.2020.00405] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022] Open
Abstract
Cyclic peptide-peptoid hybrids possess improved stability and selectivity over linear peptides and are thus better drug candidates. However, their synthesis is far from trivial and is usually difficult to automate. Here we describe a new rapid and efficient approach for the synthesis of click-based cyclic peptide-peptoid hybrids. Our methodology is based on a combination between easily synthesized building blocks, automated microwave assisted solid phase synthesis and bioorthogonal click cyclization. We proved the concept of this method using the INS peptide, which we have previously shown to activate the HIV-1 integrase enzyme. This strategy enabled the rapid synthesis and biophysical evaluation of a library of cyclic peptide-peptoid hybrids derived from HIV-1 integrase in high yield and purity. The new cyclic hybrids showed improved biological activity and were significantly more stable than the original linear INS peptide.
Collapse
Affiliation(s)
| | - Mai Shamir
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Deborah E. Shalev
- Wolfson Centre for Applied Structural Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Pharmaceutical Engineering, Azrieli College of Engineering Jerusalem, Jerusalem, Israel
| | - Mattan Hurevich
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
8
|
Barreto ADFS, Andrade CKZ. Microwave-mediated synthesis of a cyclic heptapeptoid through consecutive Ugi reactions. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Pilli RA, Assis FFDE. Organic Synthesis: New Vistas in the Brazilian Landscape. AN ACAD BRAS CIENC 2018; 90:895-941. [PMID: 29742201 DOI: 10.1590/0001-3765201820170564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022] Open
Abstract
In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute. All these areas of research are expected to enable the future development of the almost unchartered field of scalability.
Collapse
|
10
|
Barreto ADFS, Dos Santos VA, Andrade CKZ. Consecutive hydrazino-Ugi-azide reactions: synthesis of acylhydrazines bearing 1,5-disubstituted tetrazoles. Beilstein J Org Chem 2017; 13:2596-2602. [PMID: 29259669 PMCID: PMC5727845 DOI: 10.3762/bjoc.13.256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Isocyanide-based multicomponent reactions (IMCRs) allow the construction of relatively complex molecules through a one-pot synthesis. The combination of IMCRs in a consecutive or sequential fashion further extends the complexity of the molecules obtained. Herein, we report the efficient application of this approach to the synthesis of acylhydrazines bearing 1,5-disubstituted tetrazoles. Our strategy was accomplished in only three steps: first, a one-pot hydrazino-Ugi-azide four-component reaction; second a hydrazinolysis and finally an additional hydrazino-Ugi-azide reaction. This sequence provides the title compounds in moderate to excellent yields. The products synthesized herein contain functional groups within their structures that can be easily modified to obtain new acylhydrazino 1,5-disubstituted tetrazoles.
Collapse
Affiliation(s)
- Angélica de Fátima S Barreto
- Laboratório de Química Metodológica e Orgânica Sintética, Instituto de Química, Universidade de Brasília, 70910-970, Brasília-DF, Brazil
| | - Veronica Alves Dos Santos
- Laboratório de Química Metodológica e Orgânica Sintética, Instituto de Química, Universidade de Brasília, 70910-970, Brasília-DF, Brazil
| | - Carlos Kleber Z Andrade
- Laboratório de Química Metodológica e Orgânica Sintética, Instituto de Química, Universidade de Brasília, 70910-970, Brasília-DF, Brazil
| |
Collapse
|