1
|
Jiang X, Yu KS, Nam DH, Oh J. A Population Pharmacokinetic Study to Compare a Novel Empagliflozin L-Proline Formulation with Its Conventional Formulation in Healthy Subjects. Pharmaceuticals (Basel) 2024; 17:522. [PMID: 38675482 PMCID: PMC11054906 DOI: 10.3390/ph17040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Empagliflozin is a sodium-glucose cotransporter 2 (SGLT2) inhibitor that is commonly used for the treatment of type 2 diabetes mellitus (T2DM). CKD-370 was newly developed as a cocrystal formulation of empagliflozin with co-former L-proline, which has been confirmed to be bioequivalent in South Korea. This study aimed to quantify the differences in the absorption phase and pharmacokinetic (PK) parameters of two empagliflozin formulations in healthy subjects by using population PK analysis. The plasma concentration data of empagliflozin were obtained from two randomized, open-label, crossover, phase 1 clinical studies in healthy Korean subjects after a single-dose administration. A population PK model was constructed by using a nonlinear mixed-effects (NLME) approach (Monolix Suite 2021R1). Interindividual variability (IIV) and interoccasion variability (IOV) were investigated. The final model was evaluated by goodness-of-fit (GOF) diagnostic plots, visual predictive checks (VPCs), prediction errors, and bootstrapping. The PK of empagliflozin was adequately described with a two-compartment combined transit compartment model with first-order absorption and elimination. Log-transformed body weight significantly influenced systemic clearance (CL) and the volume of distribution in the peripheral compartment (V2) of empagliflozin. GOF plots, VPCs, prediction errors, and the bootstrapping of the final model suggested that the proposed model was adequate and robust, with good precision at different dose strengths. The cocrystal form did not affect the absorption phase of the drug, and the PK parameters were not affected by the different treatments.
Collapse
Affiliation(s)
- Xu Jiang
- Department of Pharmacology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea;
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Seoul National University and Hospital, Seoul 03080, Republic of Korea;
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Dong Hyuk Nam
- Department of Chemical Research Laboratory, Chong Kun Dang Research Institute, Chong Kun Dang Pharmaceutical Corporation, Yongin 16995, Republic of Korea;
| | - Jaeseong Oh
- Department of Pharmacology, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
- Clinical Research Institute, Jeju National University Hospital, Jeju 63243, Republic of Korea
| |
Collapse
|
2
|
Shah HS, Yuan J, Xie T, Yang Z, Chang C, Greenwell C, Zeng Q, Sun G, Read BN, Wilson TS, Valle HU, Kuang S, Wang J, Sekharan S, Bruhn JF. Absolute Configuration Determination of Chiral API Molecules by MicroED Analysis of Cocrystal Powders Formed Based on Cocrystal Propensity Prediction Calculations. Chemistry 2023; 29:e202203970. [PMID: 36744589 PMCID: PMC10089073 DOI: 10.1002/chem.202203970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 02/07/2023]
Abstract
Establishing the absolute configuration of chiral active pharmaceutical ingredients (APIs) is of great importance. Single crystal X-ray diffraction (scXRD) has traditionally been the method of choice for such analysis, but scXRD requires the growth of large crystals, which can be challenging. Here, we present a method for determining absolute configuration that does not rely on the growth of large crystals. By examining microcrystals formed with chiral probes (small chiral compounds such as amino acids), absolute configuration can be unambiguously determined by microcrystal electron diffraction (MicroED). Our streamlined method employs three steps: (1) virtual screening to identify promising chiral probes, (2) experimental cocrystal screening and (3) structure determination by MicroED and absolute configuration assignment. We successfully applied this method to analyze two chiral API molecules currently on the market for which scXRD was not used to determine absolute configuration.
Collapse
Affiliation(s)
- Harsh S Shah
- J-STAR Research Inc., 6 Cedar Brook Dr, Cranbury, NJ 08512, USA
| | - Jiuchuang Yuan
- XtalPi Inc., Shenzhen Jingtai Technology Co., Ltd International Biomedical Innovation Park II 3F, No. 2 Hongliu Road, Futian District, Shenzhen, 518100, China
| | - Tian Xie
- J-STAR Research Inc., 6 Cedar Brook Dr, Cranbury, NJ 08512, USA
| | - Zhuocen Yang
- XtalPi Inc., Shenzhen Jingtai Technology Co., Ltd International Biomedical Innovation Park II 3F, No. 2 Hongliu Road, Futian District, Shenzhen, 518100, China
| | - Chao Chang
- XtalPi Inc., Shenzhen Jingtai Technology Co., Ltd International Biomedical Innovation Park II 3F, No. 2 Hongliu Road, Futian District, Shenzhen, 518100, China
| | | | - Qun Zeng
- XtalPi Inc., Shenzhen Jingtai Technology Co., Ltd International Biomedical Innovation Park II 3F, No. 2 Hongliu Road, Futian District, Shenzhen, 518100, China
| | - GuangXu Sun
- XtalPi Inc., Shenzhen Jingtai Technology Co., Ltd International Biomedical Innovation Park II 3F, No. 2 Hongliu Road, Futian District, Shenzhen, 518100, China
| | - Brandon N Read
- NanoImaging Services Inc., 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Timothy S Wilson
- NanoImaging Services Inc., 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Henry U Valle
- NanoImaging Services Inc., 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Shanming Kuang
- J-STAR Research Inc., 6 Cedar Brook Dr, Cranbury, NJ 08512, USA
| | - Jian Wang
- J-STAR Research Inc., 6 Cedar Brook Dr, Cranbury, NJ 08512, USA
| | | | - Jessica F Bruhn
- NanoImaging Services Inc., 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| |
Collapse
|
3
|
SGLT2 inhibitors, an accomplished development in field of medicinal chemistry: an extensive review. Future Med Chem 2020; 12:1961-1990. [DOI: 10.4155/fmc-2020-0154] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diabetes is a chronic progressive metabolic disease caused by insulin deficiency or insulin resistance. In spite of the availability of several antihyperglycaemics, there is a need for the development of safer antidiabetic drugs due to their undesirable effects. Sodium-glucose cotransporter-2 inhibitors are a class of antidiabetics, which hinder the reabsorption of glucose in the kidneys, causing excretion of glucose via urine. Sodium-glucose cotransporter-2 inhibitors are a well-tolerated class with no significant adverse effects and are found to be favorable in certain conditions, which may be rudimentary to cardiovascular and renal diseases. The current advancements in their design and development, their mechanism of action, structure–activity relationship, synthesis and in silico development along with their auxiliary roles have been extensively reviewed.
Collapse
|
5
|
Haider K, Pathak A, Rohilla A, Haider MR, Ahmad K, Yar MS. Synthetic strategy and SAR studies of C-glucoside heteroaryls as SGLT2 inhibitor: A review. Eur J Med Chem 2019; 184:111773. [DOI: 10.1016/j.ejmech.2019.111773] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/09/2019] [Accepted: 10/08/2019] [Indexed: 12/25/2022]
|
6
|
Aguillón AR, Mascarello A, Segretti ND, de Azevedo HFZ, Guimaraes CRW, Miranda LSM, de Souza ROMA. Synthetic Strategies toward SGLT2 Inhibitors. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00017] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Anderson R. Aguillón
- Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, 22941-909 Rio de Janeiro-RJ, Brazil
| | | | | | | | | | - Leandro S. M. Miranda
- Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, 22941-909 Rio de Janeiro-RJ, Brazil
| | - Rodrigo O. M. A. de Souza
- Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, 22941-909 Rio de Janeiro-RJ, Brazil
| |
Collapse
|