1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017-2018. MASS SPECTROMETRY REVIEWS 2023; 42:227-431. [PMID: 34719822 DOI: 10.1002/mas.21721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2018. Also included are papers that describe methods appropriate to glycan and glycoprotein analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, new methods, matrices, derivatization, MALDI imaging, fragmentation and the use of arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Most of the applications are presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and highlights the impact that MALDI imaging is having across a range of diciplines. MALDI is still an ideal technique for carbohydrate analysis and advancements in the technique and the range of applications continue steady progress.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Schino I, Cantore M, de Candia M, Altomare CD, Maria C, Barros J, Cachatra V, Calado P, Shimizu K, Freitas AA, Oliveira MC, Ferreira MJ, Lopes JNC, Colabufo NA, Rauter AP. Exploring Mannosylpurines as Copper Chelators and Cholinesterase Inhibitors with Potential for Alzheimer's Disease. Pharmaceuticals (Basel) 2022; 16:ph16010054. [PMID: 36678552 PMCID: PMC9864808 DOI: 10.3390/ph16010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
Alzheimer's Disease (AD) is characterized by a progressive cholinergic neurotransmission imbalance, with a decrease of acetylcholinesterase (AChE) activity followed by a significant increase of butyrylcholinesterase (BChE) in the later AD stages. BChE activity is also crucial for the development of Aβ plaques, the main hallmarks of this pathology. Moreover, systemic copper dyshomeostasis alters neurotransmission leading to AD. In the search for structures targeting both events, a set of novel 6-benzamide purine nucleosides was synthesized, differing in glycone configuration and N7/N9 linkage to the purine. Their AChE/BChE inhibitory activity and metal ion chelating properties were evaluated. Selectivity for human BChE inhibition required N9-linked 6-deoxy-α-d-mannosylpurine structure, while all three tested β-d-derivatives appeared as non-selective inhibitors. The N9-linked l-nucleosides were cholinesterase inhibitors except the one embodying either the acetylated sugar or the N-benzyl-protected nucleobase. These findings highlight that sugar-enriched molecular entities can tune bioactivity and selectivity against cholinesterases. In addition, selective copper chelating properties over zinc, aluminum, and iron were found for the benzyl and acetyl-protected 6-deoxy-α-l-mannosyl N9-linked purine nucleosides. Computational studies highlight molecular conformations and the chelating molecular site. The first dual target compounds were disclosed with the perspective of generating drug candidates by improving water solubility.
Collapse
Affiliation(s)
- Ignazio Schino
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Biofordrug Srl, Via Dante 95, 70019 Triggiano, Italy
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Mariangela Cantore
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Biofordrug Srl, Via Dante 95, 70019 Triggiano, Italy
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Modesto de Candia
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Cosimo D. Altomare
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
| | - Catarina Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Largo da Torre, 2825-149 Caparica, Portugal
| | - João Barros
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
| | - Vasco Cachatra
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patrícia Calado
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
| | - Karina Shimizu
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Adilson A. Freitas
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria C. Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria J. Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - José N. C. Lopes
- Centro de Química Estrutural, Institute of Molecular Sciences Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nicola A. Colabufo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari Aldo Moro, Via E. Orabona 4, 70125 Bari, Italy
- Correspondence: (N.A.C.); (A.P.R.); Tel.: +351-964-408-824 (A.P.R.)
| | - Amélia P. Rauter
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculdade de Ciências, Universidade de Lisboa, Ed C8, Piso 5, Campo Grande, 1749-016 Lisboa, Portugal
- Correspondence: (N.A.C.); (A.P.R.); Tel.: +351-964-408-824 (A.P.R.)
| |
Collapse
|
3
|
Fu F, Fan Y, Chen L, Zhang J, Li J. Water Solubility and Surface Activity of Alkoxyethyl β-d-Maltosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8330-8340. [PMID: 32677832 DOI: 10.1021/acs.jafc.0c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Green surfactants alkyl glycosides are key to solve the inherent problem of water solubility due to their commercial application and extensive scientific research. Based on the enhancement strategy of hydrophilicity through the reconstruction of the conventional alkyl β-d-maltoside by introducing an oxyethyl group (-OCH2CH2-), d-maltose was used to prepare a series of nonionic disaccharide-based surfactants alkoxyethyl β-d-maltosides (4a-h, n = 6-16) so that the related water solubility was effectively improved, while the corresponding surface activity and other excellent properties were still maintained. Their physicochemical properties, including water solubility, surface activity, moisture absorption, and thermotropic liquid crystalline behavior, were investigated. The liquid crystal texture of alkoxyethyl β-d-maltosides (n = 7-16) has a fan-shaped focal conic texture. Furthermore, decoxyethyl β-d-maltoside had the strongest foaming characteristic and the best foam stability. Moreover, dodecoxyethyl β-d-maltoside (4f, n =12) had stronger emulsifying activity in the rapeseed oil/water system. Finally, CTAC/4f binary surfactants had an obvious synergistic effect. Such β-d-maltosides should have good application prospects in the future.
Collapse
Affiliation(s)
- Fang Fu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Yulin Fan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Langqiu Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jiping Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| |
Collapse
|
4
|
Fang D, Li X, Zou M, Guo X, Zhang A. Carbazole-functionalized hyper-cross-linked polymers for CO 2 uptake based on Friedel-Crafts polymerization on 9-phenylcarbazole. Beilstein J Org Chem 2019; 15:2856-2863. [PMID: 31839831 PMCID: PMC6902873 DOI: 10.3762/bjoc.15.279] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 01/27/2023] Open
Abstract
To systematically explore the effects of the synthesis conditions on the porosity of hyper-cross-linked polymers (HCPs), a series of 9-phenylcarbazole (9-PCz) HCPs (P1-P11) has been made by changing the molar ratio of cross-linker to monomer, the reaction temperature T 1, the used amount of catalyst and the concentration of reactants. Fourier transform infrared spectroscopy was utilized to characterize the structure of the obtained polymers. The TG analysis of the HCPs showed good thermal stability. More importantly, a comparative study on the porosity revealed that: the molar ratio of cross-linker to monomer was the main influence factor of the BET specific surface area. Increasing the reaction temperature T 1 or changing the used amount of catalyst could improve the total pore volume greatly but sacrificed a part of the BET specific surface area. Fortunately changing the concentration of reactants could remedy this situation. Slightly changing the concentration of reactants could simultaneously obtain a high surface area and a high total pore volume. The BET specific surface areas of P3 was up to 769 m2 g-1 with narrow pore size distribution and the CO2 adsorption capacity of P11 was up to 52.4 cm3 g-1 (273 K/1.00 bar).
Collapse
Affiliation(s)
- Dandan Fang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaodong Li
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Meishuai Zou
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyan Guo
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Aijuan Zhang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Castaldo R, Gentile G, Avella M, Carfagna C, Ambrogi V. Microporous Hyper-Crosslinked Polystyrenes and Nanocomposites with High Adsorption Properties: A Review. Polymers (Basel) 2017; 9:polym9120651. [PMID: 30965952 PMCID: PMC6418941 DOI: 10.3390/polym9120651] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/28/2022] Open
Abstract
Hyper-crosslinked (HCL) polystyrenes show outstanding properties, such as high specific surface area and adsorption capability. Several researches have been recently focused on tailoring their performance for specific applications, such as gas adsorption and separation, energy storage, air and water purification processes, and catalysis. In this review, main strategies for the realization of HCL polystyrene-based materials with advanced properties are reported, including a summary of the synthetic routes that are adopted for their realization and the chemical modification approaches that are used to impart them specific functionalities. Moreover, the most up to date results on the synthesis of HCL polystyrene-based nanocomposites that are realized by embedding these high surface area polymers with metal, metal oxide, and carbon-based nanofillers are discussed in detail, underlining the high potential applicability of these systems in different fields.
Collapse
Affiliation(s)
- Rachele Castaldo
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| | - Gennaro Gentile
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| | - Maurizio Avella
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| | - Cosimo Carfagna
- Institute for Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy.
| | - Veronica Ambrogi
- Department of Chemical, Materials and Production Engineering, University of Naples, Piazzale Tecchio 80, 80125 Napoli, Italy.
| |
Collapse
|