1
|
Manzoor S, Younis MA, Tariq QUN, Yang JQ, Ahmad N, Qiu C, Tian B, Zhang JG. Synthesis and Study of Steering of Azido-tetrazole Behavior in Tetrazolo[1,5- c]pyrimidin-5-amine-Based Energetic Materials. J Org Chem 2024; 89:6783-6792. [PMID: 38661714 DOI: 10.1021/acs.joc.4c00107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Tetrazoles and their derivatives are essential for compound synthesis due to their versatility, effectiveness, stability in air, and cost-efficiency. This has stimulated interest in developing techniques for their production. In this work, four compounds, tetrazolo[1,5-c]pyrimidin-5-amine (1), N-(4-azidopyrimidin-2-yl)nitramide (2), tetrazolo[1,5-c]pyrimidin-5(6H)-one (3), and tetrazolo[1,5-a]pyrimidin-5-amine (4), were obtained from commercially available reagents and straightforward synthetic methodologies. These new compounds were characterized by infrared (IR), 13C, and 1H NMR spectroscopy, differential scanning calorimetry (DSC), and single-crystal X-ray diffraction. The solvent, temperature, and electron-donating group (EDG) factors that were responsible for the steering of azido-tetrazole equilibrium in all compounds were also studied. In addition, the detonation performance of the target compounds was calculated by using heats of formation (HOFs) and crystal densities. Hirshfeld surface analysis was used to examine the intermolecular interactions of the four synthesized compounds. The results show that the excellent properties of 1-4 are triggered by ionic bonds, hydrogen bonds, and π-π stacking interactions, indicating that these compounds have the potential to be used in the development of high-performance energetic materials. Additionally, DFT analysis is in support of experimental results, which proved the effect of different factors that can influence the azido-tetrazole equilibrium in the synthesized pyrimidine derivatives in the solution.
Collapse
Affiliation(s)
- Saira Manzoor
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Muhammad Adnan Younis
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Qamar-Un-Nisa Tariq
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jun-Qing Yang
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - Chuntian Qiu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jian-Guo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
SnAr Reactions of 2,4-Diazidopyrido[3,2- d]pyrimidine and Azide-Tetrazole Equilibrium Studies of the Obtained 5-Substituted Tetrazolo[1,5- a]pyrido[2,3- e]pyrimidines. Molecules 2022; 27:molecules27227675. [PMID: 36431776 PMCID: PMC9698326 DOI: 10.3390/molecules27227675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
A straightforward method for the synthesis of 5-substituted tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines from 2,4-diazidopyrido[3,2-d]pyrimidine in SnAr reactions with N-, O-, and S- nucleophiles has been developed. The various N- and S-substituted products were obtained with yields from 47% to 98%, but the substitution with O-nucleophiles gave lower yields (20-32%). Furthermore, the fused tetrazolo[1,5-a]pyrimidine derivatives can be regarded as 2-azidopyrimidines and functionalized in copper(I)-catalyzed azide-alkyne dipolar cycloaddition (CuAAC) and Staudinger reactions due to the presence of a sufficient concentration of the reactive azide tautomer in solution. In total, seven products were fully characterized by their single crystal X-ray studies, while five of them were representatives of the tetrazolo[1,5-a]pyrido[2,3-e]pyrimidine heterocyclic system. Equilibrium constants and thermodynamic values were determined using variable temperature 1H NMR and are in agreement of favoring the tetrazole tautomeric form (ΔG298 = -3.33 to -7.52 (kJ/mol), ΔH = -19.92 to -48.02 (kJ/mol) and ΔS = -43.74 to -143.27 (J/mol·K)). The key starting material 2,4-diazidopyrido[3,2-d]pyrimidine presents a high degree of tautomerization in different solvents.
Collapse
|
3
|
qin Z, Ma R, Ying S, Li F, Ma Y. Synthesis of substituted pyrimido[1,2‐b]indazoles through [3+2+1] cyclization of 3‐aminoindazoles, ketones and N,N‐dimethylaminoethanol as one carbon synthon. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Fanzhu Li
- Zhejiang Chinese Medical University CHINA
| | | |
Collapse
|
4
|
Leškovskis K, Mishnev A, Novosjolova I, Turks M. Structural Study of Azide-Tetrazole Equilibrium in Pyrido[2,3-d]pyrimidines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
5
|
Stefanello FS, Kappenberg YG, Araújo JN, Franceschini SZ, Martins MA, Zanatta N, Iglesias BA, Bonacorso HG. Trifluoromethyl-substituted aryldiazenyl-pyrazolo[1,5-a]pyrimidin-2-amines: Regioselective synthesis, structure, and optical properties. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Scapin E, Zimmer GC, Vieira JC, Rodrigues CA, Afonso CA, Zanatta N, Bonacorso HG, Frizzo CP, Martins MA. Reactivity of trifluoromethyl-tetrazolo[1,5-a]pyrimidines in click chemistry and hydrogenation. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.109973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Deev SL, Shestakova TS, Shenkarev ZO, Paramonov AS, Khalymbadzha IA, Eltsov OS, Charushin VN, Chupakhin ON. 15N Chemical Shifts and JNN-Couplings as Diagnostic Tools for Determination of the Azide-Tetrazole Equilibrium in Tetrazoloazines. J Org Chem 2021; 87:211-222. [PMID: 34941254 DOI: 10.1021/acs.joc.1c02225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Selectively 15N-labeled tetrazolo[1,5-b][1,2,4]triazines and tetrazolo[1,5-a]pyrimidines bearing one, two, or three 15N labels were synthesized. The synthesized compounds were studied by 1H, 13C, and 15N NMR spectroscopy in DMSO and TFA solutions, where the azide-tetrazole equilibrium can lead to the formation of two tetrazole (T, T') isomers and one azide (A) isomer for each compound. Incorporation of the 15N-label(s) leads to the appearance of 15N-15N coupling constants (JNN), which can be easily measured via simple 1D 15N NMR spectra, even at natural abundance between labeled and unlabeled 15N atoms. The chemical shifts for the 15N nuclei in the azole moiety are very sensitive to the ring opening and azide formation, thus providing information about the azido-tetrazole equilibrium. At the same time, the 1-2JNN couplings between 15N-labeled atoms in the azole and azine fragments unambiguously determine the fusion type between tetrazole and azine rings in the cyclic isomers T and T'. Thus, combined analysis of 15N chemical shifts and JNN values in selectively isotope-enriched compounds provides an effective diagnostic tool for direct structural determination of tetrazole isomers and azide form in solution. This method was found to be the most simple and efficient way to study the azido-tetrazole equilibrium.
Collapse
Affiliation(s)
- Sergey L Deev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Tatyana S Shestakova
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | - Igor A Khalymbadzha
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Oleg S Eltsov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia
| | - Valery N Charushin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia.,I. Ya. Postovsky Institute of Organic Synthesis of Ural Branch of the Russian Academy of Sciences, 22 Sofya Kovalevskaya Street, 620108 Yekaterinburg, Russia
| | - Oleg N Chupakhin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira Street, 620002 Yekaterinburg, Russia.,I. Ya. Postovsky Institute of Organic Synthesis of Ural Branch of the Russian Academy of Sciences, 22 Sofya Kovalevskaya Street, 620108 Yekaterinburg, Russia
| |
Collapse
|
8
|
Ostrovskii VА, Danagulyan GG, Nesterova OM, Pavlyukova YN, Tolstyakov VV, Zarubina OS, Slepukhin PА, Esaulkova YL, Muryleva AА, Zarubaev VV, Trifonov RE. Synthesis and antiviral activity of nonannulated tetrazolylpyrimidines. Chem Heterocycl Compd (N Y) 2021; 57:448-454. [PMID: 34007083 PMCID: PMC8118680 DOI: 10.1007/s10593-021-02922-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022]
Abstract
Nonannulated tetrazolylpyrimidines in the structure of which the heterocyclic fragments are separated by hydrazinocarbonylmethyl, methylpyrazolyl groups or a sulfur atom were synthesized. Some of these compounds showed moderate in vitro activity against H1N1 subtype of influenza A virus. The selectivity index of the anti-influenza action of {5-[(4,6-dimethylpyrimidin-2-yl)sulfanyl]-1H-tetrazol-1-yl}acetic acid, which has very low cytotoxicity, was twice as high as the selectivity index of the reference drug rimantadine.
Collapse
Affiliation(s)
- Vladimir А. Ostrovskii
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| | - Gevorg G. Danagulyan
- Russian–Armenian (Slavonic) University, 123 Hovsep Emin St, 0051 Yerevan, Armenia
- Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of the Republic of Armenia, 26 Azatutyan Ave, 0014 Yerevan, Armenia
| | - Olga M. Nesterova
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| | - Yulia N. Pavlyukova
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| | - Vladimir V. Tolstyakov
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| | - Olga S. Zarubina
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| | - Pavel А. Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22/20 Sofyi Kovalevskoi St, Yekaterinburg, 620108 Russia
| | - Yana L. Esaulkova
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 14 Mira St, Saint Petersburg, 197101 Russia
| | - Anna А. Muryleva
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 14 Mira St, Saint Petersburg, 197101 Russia
| | - Vladimir V. Zarubaev
- Saint Petersburg Pasteur Research Institute of Epidemiology and Microbiology, 14 Mira St, Saint Petersburg, 197101 Russia
| | - Rostislav E. Trifonov
- Saint Petersburg State Institute of Technology (Technical University), 26 Moskovsky Ave, Saint Petersburg, 190013 Russia
| |
Collapse
|
9
|
Gein VL, Prudnikova AN, Kurbatova AA, Dmitriev MV. Synthesis of (E)-5-Arylvinyl-7-methyltetrazolo[1,5-a]pyrimidines. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
A three-component reaction of 5-aminotetrazole with aromatic aldehydes and
acetylacetone under solvent- and catalyst-free conditions at a temperature of
150–160°С proceeds with the formation of (E)-5-arylvinyl-7-methyltetrazolo[1,5-a]pyrimidines. 5,7-Dimethyltetrazolo[1,5-a]pyrimidine is formed as a side-product of the reaction.
Collapse
|
10
|
Mittersteiner M, Andrade VP, Bonacorso HG, Martins MAP, Zanatta N. The Wonderful World of β‐Enamino Diketones Chemistry. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mateus Mittersteiner
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Valquiria P. Andrade
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Helio G. Bonacorso
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Marcos A. P. Martins
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| | - Nilo Zanatta
- Núcleo de Química de Heterociclos (NUQUIMHE) Departmento de Química Universidade Federal de Santa Maria 97105‐900 Santa Maria RS Brazil
| |
Collapse
|
11
|
Yegorova TV, Kysil AI, Dyakonenko VV, Levkov IV, Karbovska RV, Shishkina SV, Voitenko ZV. Azido-tetrazole isomerism in 2,2-dimethyl-1-(1-methyl-1H-tetrazolo[5,1-a]isoindol-5-yl)propan-1-one. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|