1
|
Sharma PR, Malik A, Bandaru S, Vashisth K, Rana NK, Sharma RK. Experimental and computational studies on the Cinchona anchored calixarene catalysed asymmetric Michael addition reaction. Chem Commun (Camb) 2022; 58:7249-7252. [PMID: 35670109 DOI: 10.1039/d2cc02422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lower-rim Cinchona anchored calix[4]arene cationic catalysts were developed for asymmetric Michael addition of acetylacetone to β-nitrostyrenes. The desired Michael adducts were formed with high yields and enantioselectivities. Density functional theory investigations throw light on the catalyst-substrate interaction and the reaction mechanism.
Collapse
Affiliation(s)
- Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou-310018, China
| | - Kanika Vashisth
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India. .,The Department of Chemistry & Biochemistry, Baylor University, Baylor Science Building, Baylor Sciences Bldg. D.208, One Bear Place #97348, Waco, TX 76798
| | - Nirmal K Rana
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| |
Collapse
|
2
|
Supramolecular interaction controlled and calix[4]arene ligand assisted Pd-catalyzed C(sp3)−H arylation of aliphatic aldehydes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Borodina O, Ovchinnikova I, Makarov G, Yeltsov O, Titova Y, Fedorova O, Masunov AE, Bartashevich E. Pseudocyclic Form of 4-Hydroxypyrrolidine-2-carboxanilide Podands with Trioxyethylene Chain: Modeling, Conformational Search, and NMR Analysis. J Phys Chem A 2021; 125:6029-6041. [PMID: 34232648 DOI: 10.1021/acs.jpca.1c02613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The 4-hydroxypyrrolidine-2-carboxanilide podand salt demonstrates catalytic activity in asymmetric Biginelli reaction. The systematic search for prevalent conformational state of the cation was carried out by computer simulations in combination with one- and two-dimensional NMR experiments. For that purpose, we proposed a novel algorithm for the generation and selection of conformers based on molecular dynamics and clustering in the space of principal components. The search had found an important trend of the podand to form a pseudocyclic structure with a horseshoe-shaped conformation of the oligooxyethylene fragment. This conformation is stabilized by different types of intramolecular hydrogen bonds between the acidic and basic centers of the two 4-hydroxypyrrolidine-2-carboxanilide residuals (branches). The proposed approach had made it possible to identify the major structural factors, providing a correlation between the calculated and experimental chemical shifts of hydrogen atoms in the 1H NMR spectra of the protonated podand.
Collapse
Affiliation(s)
- Olga Borodina
- South Ural State University,76 Lenina Avenue, Chelyabinsk 454080, Russia
| | - Irina Ovchinnikova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoy/20 Akademicheskaya Street, Yekaterinburg 620108, Russia
| | - Gennady Makarov
- South Ural State University,76 Lenina Avenue, Chelyabinsk 454080, Russia
| | - Oleg Yeltsov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira Street, 19, Yekaterinburg, 620002, Russia
| | - Yulia Titova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoy/20 Akademicheskaya Street, Yekaterinburg 620108, Russia.,Ural Federal University named after the first President of Russia B. N. Yeltsin, Mira Street, 19, Yekaterinburg, 620002, Russia
| | - Olga Fedorova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 22 S. Kovalevskoy/20 Akademicheskaya Street, Yekaterinburg 620108, Russia
| | - Artëm E Masunov
- South Ural State University,76 Lenina Avenue, Chelyabinsk 454080, Russia.,NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, Florida 32826, United States.,School of Modeling, Simulation, and Training, University of Central Florida, 3100 Technology Parkway, Orlando, Florida 32816, United States
| | | |
Collapse
|
4
|
Das T, Mohapatra S, Mishra NP, Nayak S, Raiguru BP. Recent Advances in Organocatalytic Asymmetric Michael Addition Reactions to α, β‐Unsaturated Nitroolefins. ChemistrySelect 2021. [DOI: 10.1002/slct.202100679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tapaswini Das
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Nilima P. Mishra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| |
Collapse
|
5
|
Ma Z, Li Y, Sun XQ, Yang K, Li ZY. Calixarene Promoted Transition-Metal-Catalyzed Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202012034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Yang K, Ma Z, Tong HX, Sun XQ, Hu XY, Li ZY. Asymmetric Michael addition reactions catalyzed by a novel upper-rim functionalized calix[4]squaramide organocatalyst. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Rani D, Bhargava M, Agarwal J. Asymmetric Michael Addition of Unactivated Ketones with β‐Nitrostyrenes Mediated by Bifunctional L‐Prolinamide Organocatalysts. ChemistrySelect 2020. [DOI: 10.1002/slct.202000136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dixita Rani
- Department of Chemistry and Center of Advanced Studies Panjab University Chandigarh 160014 India
| | - Meha Bhargava
- Department of Chemistry and Center of Advanced Studies Panjab University Chandigarh 160014 India
| | - Jyoti Agarwal
- Department of Chemistry and Center of Advanced Studies Panjab University Chandigarh 160014 India
| |
Collapse
|