1
|
Kalník M, Šesták S, Kóňa J, Bella M, Poláková M. Synthesis, α-mannosidase inhibition studies and molecular modeling of 1,4-imino-ᴅ-lyxitols and their C-5-altered N-arylalkyl derivatives. Beilstein J Org Chem 2023; 19:282-293. [PMID: 36925565 PMCID: PMC10012049 DOI: 10.3762/bjoc.19.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
A synthesis of 1,4-imino-ᴅ-lyxitols and their N-arylalkyl derivatives altered at C-5 is reported. Their inhibitory activity and selectivity toward four GH38 α-mannosidases (two Golgi types: GMIIb from Drosophila melanogaster and AMAN-2 from Caenorhabditis elegans, and two lysosomal types: LManII from Drosophila melanogaster and JBMan from Canavalia ensiformis) were investigated. 6-Deoxy-DIM was found to be the most potent inhibitor of AMAN-2 (K i = 0.19 μM), whose amino acid sequence and 3D structure of the active site are almost identical to the human α-mannosidase II (GMII). Although 6-deoxy-DIM was 3.5 times more potent toward AMAN-2 than DIM, their selectivity profiles were almost the same. N-Arylalkylation of 6-deoxy-DIM resulted only in a partial improvement as the selectivity was enhanced at the expense of potency. Structural and physicochemical properties of the corresponding inhibitor:enzyme complexes were analyzed by molecular modeling.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia.,Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Maroš Bella
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
2
|
Kóňa J, Šesták S, Wilson IBH, Poláková M. 1,4-Dideoxy-1,4-imino-D- and L-lyxitol-based inhibitors bind to Golgi α-mannosidase II in different protonation forms. Org Biomol Chem 2022; 20:8932-8943. [PMID: 36322142 PMCID: PMC7614232 DOI: 10.1039/d2ob01545e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The development of effective inhibitors of Golgi α-mannosidase II (GMII, E.C.3.2.1.114) with minimal off-target effects on phylogenetically-related lysosomal α-mannosidase (LMan, E.C.3.2.1.24) is a complex task due to the complicated structural and chemical properties of their active sites. The pKa values (and also protonation forms in some cases) of several ionizable amino acids, such as Asp, Glu, His or Arg of enzymes, can be changed upon the binding of the inhibitor. Moreover, GMII and LMan work under different pH conditions. The pKa calculations on large enzyme-inhibitor complexes and FMO-PIEDA energy decomposition analysis were performed on the structures of selected inhibitors obtained from docking and hybrid QM/MM calculations. Based on the calculations, the roles of the amino group incorporated in the ring of the imino-D-lyxitol inhibitors and some ionizable amino acids of Golgi-type (Asp270-Asp340-Asp341 of Drosophila melanogaster α-mannosidase dGMII) and lysosomal-type enzymes (His209-Asp267-Asp268 of Canavalia ensiformis α-mannosidase, JBMan) were explained in connection with the observed inhibitory properties. The pyrrolidine ring of the imino-D-lyxitols prefers at the active site of dGMII the neutral form while in JBMan the protonated form, whereas that of imino-L-lyxitols prefers the protonation form in both enzymes. The calculations indicate that the binding mechanism of inhibitors to the active-site of α-mannosidases is dependent on the inhibitor structure and could be used to design new selective inhibitors of GMII. A series of novel synthetic N-substituted imino-D-lyxitols were evaluated with four enzymes from the glycoside hydrolase GH38 family (two of Golgi-type, Drosophila melanogaster GMIIb and Caenorhabditis elegans AMAN-2, and two of lysosomal-type, Drosophila melanogaster LManII and Canavalia ensiformis JBMan, enzymes). The most potent structures [N-9-amidinononyl and N-2-(1-naphthyl)ethyl derivatives] inhibited GMIIb (Ki = 40 nM) and AMAN-2 (Ki = 150 nM) with a weak selectivity index (SI) toward Golgi-type enzymes of IC50(LManII)/IC50(GMIIb) = 35 or IC50(JBMan)/IC50(AMAN-2) = 86. On the other hand, weaker micromolar inhibitors, such as N-2-naphthylmethyl or 4-iodobenzyl derivatives [IC50(GMIIb) = 2.4 μM and IC50 (AMAN-2) = 7.6 μM], showed a significant SI in the range from 111 to 812.
Collapse
Affiliation(s)
- Juraj Kóňa
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
- Medical Vision, Civic Research Association, Záhradnícka 4837/55, 82108 Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
| | - Iain B H Wilson
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia.
| |
Collapse
|
3
|
Lee ZY, Loo JSE, Wibowo A, Mohammat MF, Foo JB. Targeting cancer via Golgi α-mannosidase II inhibition: How far have we come in developing effective inhibitors? Carbohydr Res 2021; 508:108395. [PMID: 34280804 DOI: 10.1016/j.carres.2021.108395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/22/2022]
Abstract
Dysregulation of glycosylation pathways has been well documented in several types of cancer, where it often participates in cancer development and progression, especially cancer metastasis. Hence, inhibition of glycosidases such as mannosidases can disrupt the biosynthesis of glycans on cell surface glycoproteins and modify their role in carcinogenesis and metastasis. Several reviews have delineated the role of N-glycosylation in cancer, but the data regarding effective inhibitors remains sparse. Golgi α-mannosidase has been an attractive therapeutic target for preventing the formation of ß1,6-branched complex type N-glycans. However, due to its high structural similarity to the broadly specific lysosomal α-mannosidase, undesired co-inhibition occurs and this leads to serious side effects that complicates its potential role as a therapeutic agent. Even though extensive efforts have been geared towards the discovery of effective inhibitors, no breakthrough has been achieved thus far which could allow for their use in clinical settings. Improving the specificity of current inhibitors towards Golgi α-mannosidase is requisite in progressing this class of compounds in cancer chemotherapy. In this review, we highlight a few potent and selective inhibitors discovered up to the present to guide researchers for rational design of further effective inhibitors to overcome the issue of specificity.
Collapse
Affiliation(s)
- Zheng Yang Lee
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Jason Siau Ee Loo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia
| | - Agustono Wibowo
- Faculty of Applied Science, Universiti Teknologi MARA (UiTM) Pahang, Jengka Campus, 26400, Bandar Tun Abdul Razak Jengka, Pahang, Malaysia
| | - Mohd Fazli Mohammat
- Organic Synthesis Laboratory, Institute of Science, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
4
|
Klunda T, Hricovíni M, Šesták S, Kóňa J, Poláková M. Selective Golgi α-mannosidase II inhibitors: N-alkyl substituted pyrrolidines with a basic functional group. NEW J CHEM 2021. [DOI: 10.1039/d1nj01176f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic assays, molecular modeling and NMR studies of novel 1,4-dideoxy-1,4-imino-l-lyxitols provided new information on the GH38 family enzyme inhibitors and their selectivity.
Collapse
Affiliation(s)
- Tomáš Klunda
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Michal Hricovíni
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Monika Poláková
- Institute of Chemistry
- Center for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
5
|
Kalník M, Zajičková M, Kóňa J, Šesták S, Moncoľ J, Koóš M, Bella M. Synthesis of hydroxymethyl analogues of mannostatin A and their evaluation as inhibitors of GH38 α-mannosidases. NEW J CHEM 2021. [DOI: 10.1039/d1nj02351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Analogues of mannostatin A were synthesised and evaluated as inhibitors of GH38 α-mannosidases. Different regioselectivity of aziridine opening with sodium methanethiolate was observed and investigated by quantum mechanics calculations.
Collapse
Affiliation(s)
- Martin Kalník
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Mária Zajičková
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Juraj Kóňa
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Sergej Šesták
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Ján Moncoľ
- Department of Inorganic Chemistry
- Faculty of Chemical and Food Technology
- Radlinského 9
- SK-812 37 Bratislava
- Slovakia
| | - Miroslav Koóš
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| | - Maroš Bella
- Institute of Chemistry
- Centre for Glycomics
- Slovak Academy of Sciences
- SK-845 38 Bratislava
- Slovakia
| |
Collapse
|
6
|
Rísquez-Cuadro R, Matsumoto R, Ortega-Caballero F, Nanba E, Higaki K, García Fernández JM, Ortiz Mellet C. Pharmacological Chaperones for the Treatment of α-Mannosidosis. J Med Chem 2019; 62:5832-5843. [PMID: 31017416 DOI: 10.1021/acs.jmedchem.9b00153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Mannosidosis (AM) results from deficient lysosomal α-mannosidase (LAMAN) activity and subsequent substrate accumulation in the lysosome, leading to severe pathology. Many of the AM-causative mutations compromise enzyme folding and could be rescued with purpose-designed pharmacological chaperones (PCs). We found that PCs combining a LAMAN glycone-binding motif based on the 5 N,6 O-oxomethylidenemannojirimycin (OMJ) glycomimetic core and different aglycones, in either mono- or multivalent displays, elicit binding modes involving glycone and nonglycone enzyme regions that reinforce the protein folding and stabilization potential. Multivalent derivatives exhibited potent enzyme inhibition that generally prevailed over the chaperone effect. On the contrary, monovalent OMJ derivatives with LAMAN aglycone binding area-fitting substituents proved effective as activity enhancers for several mutant LAMAN forms in AM patient fibroblasts and/or transfected MAN2 B1-KO cells. This translated into a significant improvement in endosomal/lysosomal function, reverting not only the primary LAMAN substrate accumulation but also the additional downstream consequences such as cholesterol accumulation.
Collapse
Affiliation(s)
- Rocío Rísquez-Cuadro
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| | - Reimi Matsumoto
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - Fernando Ortega-Caballero
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| | - Eiji Nanba
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - Katsumi Higaki
- Organization for Research Initiative and Promotion , Tottori University , 86 Nishi-cho , Yonago 683-8503 , Japan
| | - José Manuel García Fernández
- Instituto de Investigaciones Químicas (IIQ) , CSIC-Universidad de Sevilla , Avda. Américo Vespucio 49, Isla de la Cartuja , 41092 Sevilla , Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry , University of Sevilla , C/ Profesor García González 1 , 41012 Sevilla , Spain
| |
Collapse
|