1
|
Masuku K, Menéndez-Méndez LM, Noki S, de la Torre BG, Albericio F, Fernández S, Ferrero M, Aviñó A, Eritja R, Fàbrega C. The synthesis of solid supports carrying base labile linkers to generate 3'-phosphate oligonucleotides. Bioorg Med Chem Lett 2024; 109:129819. [PMID: 38810710 DOI: 10.1016/j.bmcl.2024.129819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024]
Abstract
Oligonucleotides carrying 3'-terminal phosphates and conjugates are important tools in molecular biology and diagnostic purposes. We described the preparation of solid supports carrying the base labile linker 4-((2-hydroxyethyl)sulfonyl)benzamide for the solid-phase synthesis of 3'-phosphorylated oligonucleotides. These supports are fully compatible with the phosphoramidite chemistry yielding the desired 3'-phosphate oligonucleotides in excellent yields. The use of mild deprotection conditions allows the generation of partially protected DNA fragments.
Collapse
Affiliation(s)
- Kwazi Masuku
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Luis Miguel Menéndez-Méndez
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain; IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006 Oviedo (Asturias), Spain
| | - Sikabwe Noki
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa
| | - Beatriz G de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Martí I Franques 1-11, 08028 Barcelona, Spain
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Westville, Durban 4000, South Africa; CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain; IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain; Department of Organic Chemistry, University of Barcelona, Martí I Franques 1-11, 08028 Barcelona, Spain
| | - Susana Fernández
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006 Oviedo (Asturias), Spain
| | - Miguel Ferrero
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles", Universidad de Oviedo, 33006 Oviedo (Asturias), Spain
| | - Anna Aviñó
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain; IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ramon Eritja
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain; IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carme Fàbrega
- CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona, Spain; IQAC-CSIC. Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Sabat N, Stämpfli A, Flamme M, Hanlon S, Bisagni S, Sladojevich F, Püntener K, Hollenstein M. Artificial nucleotide codons for enzymatic DNA synthesis. Chem Commun (Camb) 2023; 59:14547-14550. [PMID: 37987464 DOI: 10.1039/d3cc04933g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Herein, we report the high-yielding solid-phase synthesis of unmodified and chemically modified trinucleotide triphosphates (dN3TPs). These synthetic codons can be used for enzymatic DNA synthesis provided their scaffold is stabilized with phosphorothioate units. Enzymatic synthesis with three rather than one letter nucleotides will be useful to produce xenonucleic acids (XNAs) and for in vitro selection of modified functional nucleic acids.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Marie Flamme
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, Basel 4070, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
3
|
Su W, Wang Y, Zou S, Zhao Y, Li Y, Zhang C, Guo X, Li S. Construction of Peptide Library in Mammalian Cells by dsDNA-Based Strategy. ACS OMEGA 2023; 8:1037-1046. [PMID: 36643544 PMCID: PMC9835800 DOI: 10.1021/acsomega.2c06402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/19/2022] [Indexed: 06/16/2023]
Abstract
While different display technologies, represented by phage display, have been widely used in drug discovery, they still can hardly achieve function-based peptide screening, which in most cases is performed in mammalian cells. And most attempts to screen functional peptides with mammalian platforms utilized plasmids to store coding information. Our previous work established double-stranded DNAs (dsDNAs) as innovative biological parts to implement AND-gate genetic circuits in mammalian cells. In the current study, we employ dsDNAs with terminal NNK degenerate codons to implement AND-gate genetic circuits and generate peptide libraries in mammalian cells. This dsDNA-based AND-gate (DBAG) peptide library construction strategy is easy to perform, requiring only PCR reaction and cell transfection. High-throughput sequencing (HTS) and single-cell sequencing results revealed both peptide length and amino acid sequence diversity of DBAG peptide libraries. Moreover, as a feasibility test of this strategy, we identified an MDM2-interacting peptide by applying the DBAG peptide library to a mammalian cell-based two-hybrid system. Our work establishes dsDNAs with terminal degenerate codons as biological parts to build peptide libraries in mammalian cells, which may have great application potential in the future.
Collapse
Affiliation(s)
- Weijun Su
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Yi Wang
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Siqi Zou
- School
of Medicine, Nankai University, Tianjin 300071, China
| | - Yanjie Zhao
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Chunze Zhang
- Department
of Colorectal Surgery, Tianjin Union Medical
Center, Tianjin 300121, China
| | - Xiaojing Guo
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| | - Shuai Li
- Department
of Breast Cancer Pathology and Research Laboratory, Tianjin Medical
University Cancer Institute & Hospital, National Clinical Research
Center for Cancer; Key Laboratory of Cancer Prevention and Therapy,
Tianjin, Tianjin’s Clinical Research
Center for Cancer, Tianjin 300060, China
| |
Collapse
|
4
|
Senthilvelan A, Shanmugasundaram M, Kore AR. Efficient and Improved Solution-Phase Synthesis of Modified RNA Dinucleotides: Versatile Synthons in Cap 1 mRNA Therapeutics. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annamalai Senthilvelan
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Muthian Shanmugasundaram
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| | - Anilkumar R. Kore
- Life Sciences Solutions Group, Thermo Fisher Scientific, 2130 Woodward Street, Austin, Texas 78744-1832, United States
| |
Collapse
|
5
|
Suchsland R, Appel B, Virta P, Müller S. Synthesis of fully protected trinucleotide building blocks on a disulphide-linked soluble support. RSC Adv 2021; 11:3892-3896. [PMID: 35424330 PMCID: PMC8694130 DOI: 10.1039/d0ra10941j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, preparation of fully protected trinucleotide phosphoramidites as synthons for the codon-based synthesis of gene libraries as well as for the assembly of oligonucleotides from blockmers has gained much attention. We here describe the preparation of such trinucleotide synthons on a soluble support using a disulphide linker. Fully protected trinucleotides are synthesized on a tetrapodal soluble support using a disulphide linkage that upon reductive cleavage allows release of the trinucleotide with free 3′-OH group for further conversion to a phosphoramidite.![]()
Collapse
Affiliation(s)
- Ruth Suchsland
- University Greifswald
- Institute for Biochemistry
- 17487 Greifswald
- Germany
| | - Bettina Appel
- University Greifswald
- Institute for Biochemistry
- 17487 Greifswald
- Germany
| | - Pasi Virta
- University of Turku
- Department of Chemistry
- 20014 Turku
- Finland
| | - Sabine Müller
- University Greifswald
- Institute for Biochemistry
- 17487 Greifswald
- Germany
| |
Collapse
|
6
|
Lagoutte P. [Ribosome display: Evolution and acellular selection of molecular libraries for high affinity binder generation]. Med Sci (Paris) 2020; 36:717-724. [PMID: 32821048 DOI: 10.1051/medsci/2020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ribosome display is a powerful method for selection and molecular evolution of proteins and peptides from large libraries. Displayed proteins are recovered from target molecules in multiple rounds of selection in order to enrich specific binders with the desired properties. Nowadays, ribosome display has become one of the most widely-used display technologies thanks to its advantages over cell-display as phage display. Ribosome display is an in vitro method, in which a stable ternary complex is formed between the mRNA, the ribosome and the nascent protein. A selection cycle can be performed in a few days and bacterial transformation is not necessary. Ribosome display has been used to screen and select peptides, proteins or molecular scaffolds in order to increase their affinity, specificity, catalytic activity or stability. In this review, ribosome display systems and their applications in selection and evolution of proteins are described.
Collapse
Affiliation(s)
- Priscillia Lagoutte
- Univ Lyon, CNRS, Laboratoire de biologie tissulaire et ingénierie thérapeutique, LBTI, UMR 5305. 7 passage du Vercors, F-69637, Lyon, France
| |
Collapse
|
7
|
Lindenburg L, Huovinen T, van de Wiel K, Herger M, Snaith MR, Hollfelder F. Split & mix assembly of DNA libraries for ultrahigh throughput on-bead screening of functional proteins. Nucleic Acids Res 2020; 48:e63. [PMID: 32383757 PMCID: PMC7293038 DOI: 10.1093/nar/gkaa270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/02/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
Site-saturation libraries reduce protein screening effort in directed evolution campaigns by focusing on a limited number of rationally chosen residues. However, uneven library synthesis efficiency leads to amino acid bias, remedied at high cost by expensive custom synthesis of oligonucleotides, or through use of proprietary library synthesis platforms. To address these shortcomings, we have devised a method where DNA libraries are constructed on the surface of microbeads by ligating dsDNA fragments onto growing, surface-immobilised DNA, in iterative split-and-mix cycles. This method-termed SpliMLiB for Split-and-Mix Library on Beads-was applied towards the directed evolution of an anti-IgE Affibody (ZIgE), generating a 160,000-membered, 4-site, saturation library on the surface of 8 million monoclonal beads. Deep sequencing confirmed excellent library balance (5.1% ± 0.77 per amino acid) and coverage (99.3%). As SpliMLiB beads are monoclonal, they were amenable to direct functional screening in water-in-oil emulsion droplets with cell-free expression. A FACS-based sorting of the library beads allowed recovery of hits improved in Kd over wild-type ZIgE by up to 3.5-fold, while a consensus mutant of the best hits provided a 10-fold improvement. With SpliMLiB, directed evolution workflows are accelerated by integrating high-quality DNA library generation with an ultra-high throughput protein screening platform.
Collapse
Affiliation(s)
- Laurens Lindenburg
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Tuomas Huovinen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Kayleigh van de Wiel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| | - Michael Herger
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- AstraZeneca Medimmune Cambridge, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Michael R Snaith
- AstraZeneca Medimmune Cambridge, Antibody Discovery and Protein Engineering, Cambridge, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
| |
Collapse
|
8
|
Conlon PF, Eguaogie O, Wilson JJ, Sweet JST, Steinhoegl J, Englert K, Hancox OGA, Law CJ, Allman SA, Tucker JHR, Hall JP, Vyle JS. Solid-phase synthesis and structural characterisation of phosphoroselenolate-modified DNA: a backbone analogue which does not impose conformational bias and facilitates SAD X-ray crystallography. Chem Sci 2019; 10:10948-10957. [PMID: 32190252 PMCID: PMC7066676 DOI: 10.1039/c9sc04098f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/11/2019] [Indexed: 01/20/2023] Open
Abstract
Oligodeoxynucleotides incorporating internucleotide phosphoroselenolate linkages have been prepared under solid-phase synthesis conditions using dimer phosphoramidites. These dimers were constructed following the high yielding Michaelis-Arbuzov (M-A) reaction of nucleoside H-phosphonate derivatives with 5'-deoxythymidine-5'-selenocyanate and subsequent phosphitylation. Efficient coupling of the dimer phosphoramidites to solid-supported substrates was observed under both manual and automated conditions and required only minor modifications to the standard DNA synthesis cycle. In a further demonstration of the utility of M-A chemistry, the support-bound selenonucleoside was reacted with an H-phosphonate and then chain extended using phosphoramidite chemistry. Following initial unmasking of methyl-protected phosphoroselenolate diesters, pure oligodeoxynucleotides were isolated using standard deprotection and purification procedures and subsequently characterised by mass spectrometry and circular dichroism. The CD spectra of both modified and native duplexes derived from self-complementary sequences with A-form, B-form or mixed conformational preferences were essentially superimposable. These sequences were also used to study the effect of the modification upon duplex stability which showed context-dependent destabilisation (-0.4 to -3.1 °C per phosphoroselenolate) when introduced at the 5'-termini of A-form or mixed duplexes or at juxtaposed central loci within a B-form duplex (-1.0 °C per modification). As found with other nucleic acids incorporating selenium, expeditious crystallisation of a modified decanucleotide A-form duplex was observed and the structure solved to a resolution of 1.45 Å. The DNA structure adjacent to the modification was not significantly perturbed. The phosphoroselenolate linkage was found to impart resistance to nuclease activity.
Collapse
Affiliation(s)
- Patrick F Conlon
- School of Chemistry and Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast , BT9 5AG , UK .
| | - Olga Eguaogie
- School of Chemistry and Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast , BT9 5AG , UK .
| | - Jordan J Wilson
- School of Chemistry and Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast , BT9 5AG , UK .
| | - Jamie S T Sweet
- School of Chemistry and Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast , BT9 5AG , UK .
| | - Julian Steinhoegl
- Reading School of Pharmacy , University of Reading , Whiteknights , Reading RG6 6AP , UK .
| | - Klaudia Englert
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| | - Oliver G A Hancox
- Reading School of Pharmacy , University of Reading , Whiteknights , Reading RG6 6AP , UK .
| | - Christopher J Law
- School of Biological Sciences , Queen's University Belfast , 15 Chlorine Gardens , Belfast BT9 5AH , UK
| | - Sarah A Allman
- Reading School of Pharmacy , University of Reading , Whiteknights , Reading RG6 6AP , UK .
| | - James H R Tucker
- School of Chemistry , University of Birmingham , Edgbaston , Birmingham B15 2TT , UK
| | - James P Hall
- Reading School of Pharmacy , University of Reading , Whiteknights , Reading RG6 6AP , UK .
- Diamond Light Source , Chilton , Didcot , Oxfordshire OX11 0DE , UK
| | - Joseph S Vyle
- School of Chemistry and Chemical Engineering , Queen's University Belfast , David Keir Building, Stranmillis Road , Belfast , BT9 5AG , UK .
| |
Collapse
|
9
|
Suchsland R, Appel B, Müller S. Synthesis of Trinucleotide Building Blocks in Solution and on Solid Phase. ACTA ACUST UNITED AC 2018; 75:e60. [PMID: 30375750 DOI: 10.1002/cpnc.60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have developed two methods, in solution and on solid phase, that give easy access to trinucleotide phosphoramidites capable of undergoing coupling reactions by the solid-phase phosphoramidite approach. The solution protocol is characterized by application of 5'-O-dimethoxytrityl (DMT) and 3'-O-tert-butyldimethylsilyl (TBDMS) as a pair of orthogonal protecting groups and 2-cyanoethyl (CE) for protection of the phosphate. Starting with suitably functionalized monomers, synthesis proceeds in the 3'- to 5'-direction, delivering the fully protected trinucleotide. The 3'-O-protecting group is cleaved followed by phosphitylation of the free 3'-OH group. The solid-phase protocol is based on standard phosphoramidite chemistry in conjunction with a dithiomethyl linkage connecting the 3'-starting nucleoside to the polymer. The disulfide bridge can be cleaved under neutral conditions for release of the trinucleotide from the support preserving all other protecting groups. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Ruth Suchsland
- Institute for Biochemistry, University Greifswald, Greifswald, Germany
| | - Bettina Appel
- Institute for Biochemistry, University Greifswald, Greifswald, Germany
| | - Sabine Müller
- Institute for Biochemistry, University Greifswald, Greifswald, Germany
| |
Collapse
|
10
|
Halami B, Shahsavari S, Nelson Z, Prehoda L, Eriyagama DNAM, Fang S. Incorporation of Sensitive Ester and Chloropurine Groups into Oligodeoxynucleotides through Solid Phase Synthesis. ChemistrySelect 2018; 3:8857-8862. [PMID: 30886889 PMCID: PMC6420219 DOI: 10.1002/slct.201801484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 02/06/2023]
Abstract
Nucleosides containing ester groups that are sensitive to nucleophiles were incorporated into oligodeoxynucleotides (ODNs) through solid phase chemical synthesis. The sensitive esters are located on a purine nucleobase. They are the esters of ethyl, 2-methoxyethyl, 4-methoxyphenyl and phenyl groups, and a thioester. These esters cannot survive the deprotection and cleavage conditions used in known ODN synthesis technologies, which involve strong nucleophiles such as ammonium hydroxide and potassium methoxide (potassium carbonate in anhydrous methanol). To incorporate these sensitive groups into ODNs, the Dmoc phosphoramidites and linker were used for solid phase synthesis, which allowed ODN deprotection and cleavage to be carried out under non-nucleophilic oxidative conditions. Sixteen ODN sequences containing these groups were synthesized and characterized with MALDI MS. In addition, the synthesis and characterization of three ODNs containing a nucleophile sensitive 6-chloropurine using the same strategy are described.
Collapse
Affiliation(s)
- Bhaskar Halami
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Shahien Shahsavari
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Zack Nelson
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Lucas Prehoda
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | | | - Shiyue Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|