1
|
Kumar R. Decennary Update on Oxidative-Rearrangement Involving 1,2-Aryl C-C Migration Around Alkenes: Synthetic and Mechanistic Insights. Chem Asian J 2024; 19:e202400053. [PMID: 38741472 DOI: 10.1002/asia.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
In recent years, numerous methodologies on oxidative rearrangements of alkenes have been investigated, that produce multipurpose synthons and heterocyclic scaffolds of potential applications. The present review focused on recently established methodologies for oxidative transformation via 1,2-aryl migration in alkenes (2013-2023). Special emphasis has been placed on mechanistic pathways to understand the reactivity pattern of different substrates, challenges to enhance selectivity, the key role of different reagents, and effect of different substituents, and how they affect the rearrangement process. Moreover, synthetic limitations and future direction also have been discussed. We believe, this review offers new synthetic and mechanistic insight to develop elegant precursors and approaches to explore the utilization of alkene-based compounds for natural product synthesis and functional materials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana (India
| |
Collapse
|
2
|
Alkahtani R, Wirth T. Synthesis of Chiral Iodoaniline-Lactate Based Catalysts for the α-Functionalization of Ketones. ACS ORGANIC & INORGANIC AU 2023; 3:209-216. [PMID: 37545658 PMCID: PMC10401694 DOI: 10.1021/acsorginorgau.3c00012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 08/08/2023]
Abstract
A family of chiral iodoaniline-lactate based catalysts with C1 and C2 symmetry were efficiently synthesized. Comparisons between the reactivity and selectivity between the new and previously reported catalysts are made. The new catalysts promoted the α-oxysulfonylation of ketones in shorter reaction times and with higher yields of up to 99%. A scope for the oxysulfonylation reaction is presented, forming a variety of reported and novel products with enantioselectivities of up to 83%.
Collapse
Affiliation(s)
- Rawiyah Alkahtani
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, United Kingdom
- Chemistry
Department, College of Science, Princess
Nourah bint Abdulrahman University, 11671, Riyadh, Saudi
Arabia
| | - Thomas Wirth
- School
of Chemistry, Cardiff University, Main Building, Park Place, CF10 3AT, Cardiff, United Kingdom
| |
Collapse
|
3
|
Kumar R, Kamal R, Kumar V, Parkash J. Bifunctionalization of α,β-unsaturated diaryl ketones into α-aryl-β,β-ditosyloxy ketones: Single crystal XRD, DFT, FMOs, molecular electrostatic potential, hirshfeld surface analysis, and 3D-energy frameworks. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Kumar R, Parkash J, Kamal R, Kumar V, Saini S. Synthesis, XRD and Mechanistic Studies of α‐Aryl‐β,β‐ditosyloxy Ketones: An Oxidative 1,2‐Aryl Migration in α,β‐Unsaturated Diaryl Ketones Under Metal Free Conditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 Haryana India
- Department of Chemistry Maharishi Markandeshwar (Deemed to be University) Mullana 133207 Ambala, Haryana India
| | - Jai Parkash
- Department of Chemistry Kurukshetra University Kurukshetra 136119 Haryana India
| | - Raj Kamal
- Department of Chemistry Kurukshetra University Kurukshetra 136119 Haryana India
| | - Vipan Kumar
- Department of Chemistry Kurukshetra University Kurukshetra 136119 Haryana India
| | - Sangeeta Saini
- Department of Chemistry Kurukshetra University Kurukshetra 136119 Haryana India
| |
Collapse
|
5
|
HPLC separation of 2-aryloxycarboxylic acid enantiomers on chiral stationary phases. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Deng XJ, Liu HX, Zhang LW, Zhang GY, Yu ZX, He W. Iodoarene-Catalyzed Oxyamination of Unactivated Alkenes to Synthesize 5-Imino-2-Tetrahydrofuranyl Methanamine Derivatives. J Org Chem 2020; 86:235-253. [PMID: 33336571 DOI: 10.1021/acs.joc.0c02047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Reported here is the room-temperature metal-free iodoarene-catalyzed oxyamination of unactivated alkenes. In this process, the alkenes are difunctionalized by the oxygen atom of the amide group and the nitrogen in an exogenous HNTs2 molecule. This mild and open-air reaction provided an efficient synthesis to N-bistosyl-substituted 5-imino-2-tetrahydrofuranyl methanamine derivatives, which are important motifs in drug development and biological studies. Mechanistic study based on experiments and density functional theory calculations showed that this transformation proceeds via activation of the substrate alkene by an in situ generated cationic iodonium(III) intermediate, which is subsequently attacked by an oxygen atom (instead of nitrogen) of amides to form a five-membered ring intermediate. Finally, this intermediate undergoes an SN2 reaction by NTs2 as the nucleophile to give the oxygen and nitrogen difunctionalized 5-imino-2-tetrahydrofuranyl methanamine product. An asymmetric variant of the present alkene oxyamination using chiral iodoarenes as catalysts also gave promising results for some of the substrates.
Collapse
Affiliation(s)
- Xiao-Jun Deng
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hui-Xia Liu
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Lu-Wen Zhang
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Guan-Yu Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
7
|
Deng X, Zhang L, Liu H, Bai Y, He W. mCPBA-mediated dioxygenation of unactivated alkenes for the synthesis of 5-imino-2-tetrahydrofuranyl methanol derivatives. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Kumar R, Sharma N, Prakash O. Hypervalent Iodine Reagents in the Synthesis of Flavonoids and Related Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200420074551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hypervalent iodine compounds have proved to be very useful reagents to bring
about various oxidative transformations including (i) α-functionalization of carbonyl compounds,
(ii) oxidation of phenols, and (iii) oxidative rearrangement of ketones and α,β-
unsaturated ketones. These reactions find interesting applications in the development of
newer and convenient approaches for the synthesis of flavonoids. This review focuses on
the use of most common three hypervalent compounds, namely iodobenzene diacetate,
[hydroxy(tosyloxy)iodo]benzene, and [bis-trifluoroacetoxy(iodo)]benzene in the synthesis
of cis/trans-3-hydroxyflavanones, 3-hydroxyflavones (flavonols), flavones, isoflavones
and related compounds.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, M.L.N. College, Yamuna Nagar-135001, Haryana, India
| | - Nitya Sharma
- Department of Chemistry, M.L.N. College, Yamuna Nagar-135001, Haryana, India
| | - Om Prakash
- Department of Chemistry, Kurukshetra University, Kurukshetra-136119, Haryana, India
| |
Collapse
|
9
|
Abstract
Asymmetric organocatalytic oxidations have been witnessed to an impressive development in the last years thanks to the establishment of important chiral hypervalent iodines(III/V). Many different approaches involving both stoichiometric and catalytic versions have provided a fundamental advance in this area within asymmetric synthesis. The easily handing, nontoxic, mild, environmentally friendly (green oxidants), and high stability that are features of these reagents have been applied to many reactions and also have allowed exploring further unprecedented enantioselective transformations. The intention of the present review is thus to highlight as a whole the many approaches utilized up to date to prepare chiral iodines(III/V), as well as their reactivity in a comprehensive manner.
Collapse
Affiliation(s)
- Alejandro Parra
- Facultad de Ciencias, Departamento de Química Orgánica, Institute for Advance Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid , 28049 Madrid , Spain
| |
Collapse
|
10
|
Lee JH, Choi S, Hong KB. Alkene Difunctionalization Using Hypervalent Iodine Reagents: Progress and Developments in the Past Ten Years. Molecules 2019; 24:molecules24142634. [PMID: 31331092 PMCID: PMC6680546 DOI: 10.3390/molecules24142634] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 11/16/2022] Open
Abstract
Hypervalent iodine reagents are of considerable relevance in organic chemistry as they can provide a complementary reaction strategy to the use of traditional transition metal chemistry. Over the past two decades, there have been an increasing number of applications including stoichiometric oxidation and catalytic asymmetric variations. This review outlines the main advances in the past 10 years in regard to alkene heterofunctionalization chemistry using achiral and chiral hypervalent iodine reagents and catalysts.
Collapse
Affiliation(s)
- Ji Hoon Lee
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 701-310, Korea
| | - Sungwook Choi
- Department of New Drug Discovery and Development, Chungnam National University, Daejon 305-764, Korea.
| | - Ki Bum Hong
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu 701-310, Korea.
| |
Collapse
|
11
|
Asymmetric syntheses and applications of planar chiral hypervalent iodine(V) reagents with crown ether backbones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Zhang JS, Liu L, Chen T, Han LB. Transition-Metal-Catalyzed Three-Component Difunctionalizations of Alkenes. Chem Asian J 2018; 13:2277-2291. [DOI: 10.1002/asia.201800647] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/12/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Ji-Shu Zhang
- College of Chemistry and Chemical engineering; Hunan University; Changsha Hunan 410082 China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources; College of Materials and Chemical Engineering; Hainan University; Haikou, Hainan 570228 China
| | - Tieqiao Chen
- College of Chemistry and Chemical engineering; Hunan University; Changsha Hunan 410082 China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources; College of Materials and Chemical Engineering; Hainan University; Haikou, Hainan 570228 China
| | - Li-Biao Han
- National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
13
|
Elsherbini M, Wirth T. Hypervalent Iodine Reagents by Anodic Oxidation: A Powerful Green Synthesis. Chemistry 2018; 24:13399-13407. [DOI: 10.1002/chem.201801232] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/09/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Mohamed Elsherbini
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT UK
| | - Thomas Wirth
- School of Chemistry; Cardiff University; Park Place, Main Building Cardiff CF10 3AT UK
| |
Collapse
|