1
|
Kilgallon LJ, McFadden TP, Sigman MS, Johnson JA. Tricyclononenes and tricyclononadienes as efficient monomers for controlled ROMP: understanding structure-propagation rate relationships and enabling facile post-polymerization modification. Chem Sci 2024; 15:8334-8345. [PMID: 38846402 PMCID: PMC11151844 DOI: 10.1039/d4sc01986e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024] Open
Abstract
Grubbs 3rd-generation (G3) pre-catalyst-initiated ring-opening metathesis polymerization (ROMP) remains an indispensable tool in the polymer chemist's toolbox. Tricyclononenes (TCN) and tricyclononadienes (TCND) represent under-explored classes of monomers for ROMP that have the potential to both advance fundamental knowledge (e.g., structure-polymerization kinetics relationships) and serve as practical tools for the polymer chemist (e.g., post-polymerization functionalization). In this work, a library of TCN and TCND imides, monoesters, and diesters, along with their exo-norbornene counterparts, were synthesized to compare their behaviors in G3-initiated ROMP. Real-time 1H NMR was used to study their polymerization kinetics; propagation rates (k p) were extracted for each monomer. To understand the relationships between monomer structure and ROMP propagation rates, density functional theory methods were used to calculate a variety of electronic and steric parameters for each monomer. While electronic parameters (e.g., HOMO energy levels) correlated positively with the measured k p values, steric parameters generally gave improved correlations, which indicates that monomer size and shape are better predictors for k p than electronic parameters for this data set. Furthermore, the TCND diester-which contains an electron-deficient cyclobutene that is resistant to ROMP-and its polymer p(TCND) are shown to be highly reactive toward DBU-catalyzed conjugate addition reactions with thiols, providing a protecting- and activating-group free strategy for post-polymerization modification.
Collapse
Affiliation(s)
- Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Timothy P McFadden
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Matthew S Sigman
- Department of Chemistry, University of Utah Salt Lake City Utah 84112 USA
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology 500 Main Street Cambridge MA 02139 USA
- Broad Institute of MIT and Harvard Cambridge MA 02142 USA
| |
Collapse
|
2
|
Bermesheva EV, Medentseva EI, Khrychikova AP, Wozniak AI, Guseva MA, Nazarov IV, Morontsev AA, Karpov GO, Topchiy MA, Asachenko AF, Danshina AA, Nelyubina YV, Bermeshev MV. Air-Stable Single-Component Pd-Catalysts for Vinyl-Addition Polymerization of Functionalized Norbornenes. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Evgeniya V. Bermesheva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- I.M. Sechenov First Moscow State Medical University, Trubetskaya str., 8, building 2, Moscow 119991, Russia
| | - Ekaterina I. Medentseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anna P. Khrychikova
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
- D.I. Mendeleyev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russia
| | - Alyona I. Wozniak
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Marina A. Guseva
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Ivan V. Nazarov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Alexander A. Morontsev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Gleb O. Karpov
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Maxim A. Topchiy
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Andrey F. Asachenko
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| | - Anastasia A. Danshina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
- Moscow Institute of Physics and Technology (National Research University), Institutskiy per., 9, Dolgoprudny, Moscow Region 141701, Russia
| | - Yulia V. Nelyubina
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991, Russia
| | - Maxim V. Bermeshev
- A.V. Topchiev Institute of Petrochemical Synthesis, RAS, 29 Leninskiy pr., Moscow 119991, Russia
| |
Collapse
|
3
|
Laurent Q, Sakai N, Matile S. An Orthogonal Dynamic Covalent Chemistry Tool for Ring-Opening Polymerization of Cyclic Oligochalcogenides on Detachable Helical Peptide Templates. Chemistry 2022; 28:e202200785. [PMID: 35416345 PMCID: PMC9324982 DOI: 10.1002/chem.202200785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 12/13/2022]
Abstract
A model system is introduced as a general tool to elaborate on orthogonal templation of dynamic covalent ring-opening polymerization (ODC-TROP). The tool consists of 310 helical peptides as unprecedented templates and semicarbazones as orthogonal dynamic covalent linkers. With difficult-to-control 1,2-dithiolanes, ODC-TROP on the level of short model oligomers occurs with high templation efficiency, increasing and diminishing upon helix stabilization and denaturation, respectively. Further, an anti-templated conjugate with mispositioned monomers gave reduced templation upon helix twisting. Even with the "unpolymerizable" 1,2-diselenolanes, initial studies already afford mild templation efficiency. These proof-of-principle results promise that the here introduced tool, recyclable and enabling late-stage side chain modification, will be useful to realize ODC-TROP of intractable or unknown cyclic dynamic covalent monomers for dynamer materials as well as cellular uptake and signaling applications.
Collapse
Affiliation(s)
- Quentin Laurent
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| | - Naomi Sakai
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| | - Stefan Matile
- Department of Organic ChemistryUniversity of Geneva1211GenevaSwitzerland
| |
Collapse
|
4
|
Dawood KM, Nomura K. Recent Developments in Z‐Selective Olefin Metathesis Reactions by Molybdenum, Tungsten, Ruthenium, and Vanadium Catalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001117] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kamal M. Dawood
- Department of Chemistry Faculty of Science Cairo University Giza 12613 Egypt Tel. & Fax
| | - Kotohiro Nomura
- Department of Chemistry Faculty of Science Tokyo Metropolitan University, Hachioji Tokyo 192-0397 Japan
| |
Collapse
|
5
|
Banwell MG, Liu X, Connal LA, Gardiner MG. Synthesis of Functionally and Stereochemically Diverse Polymers via Ring-Opening Metathesis Polymerization of Derivatives of the Biomass-Derived Platform Molecule Levoglucosenone Produced at Industrial Scale. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01305] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin G. Banwell
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Xin Liu
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| | - Michael G. Gardiner
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Luh TY, Lin WY, Lai G. Determination of the Orientation of Pendants on Rigid-Rod Polymers. Chem Asian J 2020; 15:1808-1818. [PMID: 32314531 DOI: 10.1002/asia.202000370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 11/08/2022]
Abstract
Bis-norbornene and bis-cyclobutene with different kinds of linkers have been extensively used for the synthesis of double stranded ladderphanes under ruthenium- or molybdenum-catalyzed ring opening metathesis polymerization (ROMP) conditions. The key to the success relies on the selective formation of comb-like polynorbornenes or polycycloubtenes, where pendants are all aligned towards similar direction. This minireview summarizes various methods (chemical methods, spectroscopic means, and nonlinear optical measurements) for determining the comb-like conformations of pendants on these rigid-rod polymers. The approach is based on the proximal relationship between adjacent pendants. Interactions between these adjacent pendants would enable a change in chemical reactivity.
Collapse
Affiliation(s)
- Tien-Yau Luh
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Wei-Yu Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Guoqiao Lai
- Key Laboratory of Organosilicon Chemistry and Material, Technology of Ministry of Eduction,\, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
7
|
Song W, Li Y, Liu X, Xu Z, Wu J, Ding L. Functional Block Copolymers Carrying One Double-Stranded Ladderphane and One Single-Stranded Block in a Facile Metathesis Cyclopolymerization Procedure. Int J Mol Sci 2019; 20:E5166. [PMID: 31635234 PMCID: PMC6829535 DOI: 10.3390/ijms20205166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
In order to improve the poor film-forming ability of polymeric ladderphane, di-block copolymers containing perylene diimide (PDI)-linked double-stranded poly(1,6-heptadiyne) ladderphane and branched alkyl side chains modified single-stranded poly(1,6-heptadiyne) were synthesized by metathesis cyclopolymerization (MCP) using Grubbs third-generation catalyst (Ru-III) in tetrahydrofuran solvent. The first block containing the ladderphane structure leads to higher thermal-stability, wider UV-vis absorption, lower LUMO level and ladderphane-induced rigidity and poor film-forming ability. The second block containing long alkyl chains is crucial for the guarantee of excellent film-forming ability. By comparing the effect of ladderphane structure on the resulted copolymers, single-stranded poly(1,6-heptadiyne) derivatives with PDI pedant were also processed. The structures of copolymers were proved by 1H NMR and gel permeation chromatography, electrochemical, photophysical, and thermal-stability performance were achieved by cyclic voltammetry (CV), UV-visible spectroscopy and thermogravimetric analysis (TGA) measurements. According to the experiment results, both copolymers possessed outstanding film-forming ability, which cannot be realized by small PDI molecules and oligomers. And they can serve as a superior candidate as for n-type materials, especially for their relatively wide range of light absorption (λ = 200~800 nm), and lower LUMO level (-4.3 and -4.0 eV).
Collapse
Affiliation(s)
- Wei Song
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yadi Li
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Xunhu Liu
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Zongyi Xu
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Jianhua Wu
- Department of Materials, College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China.
| | - Liang Ding
- Department of Polymer and Composite Material, School of Materials Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|