1
|
Hofmaier M, Flemming P, Guskova O, Münch AS, Uhlmann P, Müller M. Swelling and Orientation Behavior of End-Grafted Polymer Chains by In Situ Attenuated Total Reflection Fourier Transform Infrared Spectroscopy Complementing In Situ Ellipsometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16219-16230. [PMID: 37941338 DOI: 10.1021/acs.langmuir.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The literature lacks established concrete parameters for assigning grafted chain regimes. In this context, dichroic in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and in situ ellipsometry were used complementarily, offering new opportunities for conformational analysis of end-grafted polymer chains. Especially polymer chain orientation was studied as a new parameter, among others, for proper chain regime assignment in this report. Alkyne-functionalized poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) with a molecular weight of 49.8 kg/mol and a contour length of around 80 nm was grafted to self-assembled monolayers bearing triazole end groups as reported. Different chain regimes were generated by using three different grafting densities. ATR-FTIR spectroscopy based on the ν(C═O) stretching vibration at around 1728 cm-1 provided a new direct approach to determine the GD of polymer chains. Significant shifts in the position of the ν(C═O) band comparing dry and wet states were observed, caused by increased hydrogen bonding interactions between PDMAEMA and water. Finally, the averaged orientation of PDMAEMA chains along the z-axis was determined using dichroic ATR-FTIR spectroscopy based on the dichroic ratios of the ν(C═O) band and molecular order parameters SZ,MOL calculated thereof. High SZ,MOL values were found for the wet state compared to the dry state, confirming that all GD PDMAEMA samples are in the brush regime in the swollen state.
Collapse
Affiliation(s)
- Mirjam Hofmaier
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Patricia Flemming
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Physical Chemistry of Polymeric Materials, Technical University Dresden (TUD), Zellescher Weg 19, D-01069 Dresden, Germany
| | - Olga Guskova
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Kaitzer Straße 4, D-01069 Dresden, Germany
| | - Alexander S Münch
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Petra Uhlmann
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Martin Müller
- , Institut Physikalische Chemie und Chemie der Polymere, Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Chair of Macromolecular Chemistry, Technical University of Dresden (TUD), Mommsenstraße 4, D-01062 Dresden, Germany
| |
Collapse
|
2
|
Zhou H, Matoba F, Matsuno R, Wakayama Y, Yamada T. Direct Conversion of Phase-Transition Entropy into Electrochemical Thermopower and the Peltier Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303341. [PMID: 37315308 DOI: 10.1002/adma.202303341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/05/2023] [Indexed: 06/16/2023]
Abstract
A thermocell generates thermopower from a temperature difference (ΔT) between two electrodes. The converse process of thermocells is an electrochemical Peltier effect, which creates a ΔT on the electrodes by applying an external current. The Seebeck coefficient (Se ) of the electrochemical system is proportional to the entropy change of the redox reaction; therefore, a redox system having a significant entropy change is expected to increase the Se . In this study, a thermoresponsive polymer having a redox-active moiety, poly(N-isopropyl acrylamide-co-N-(2-acrylamide ethyl)-N'-n-propylviologen) (PNV), is used as the redox species of a thermocell. PNV2+ dication undergoes the coil-globule phase transition upon the reduction to PNV+ cation radical, and a large entropy change is introduced because water molecules are freed from the polymer chains. The Se of PNV thermocell drastically increased to +2.1 mV K-1 at the lower critical solution temperature (LCST) of PNV. The entropy change calculated from the increment of Se agrees with the value evaluated by differential scanning calorimetry. Moreover, the electrochemical Peltier effect is observed when the device temperature is increased above the LCST. This study shows that the large entropy change associated with the coil-globule phase transition can be used in electrochemical thermal management and refrigeration technologies.
Collapse
Affiliation(s)
- Hongyao Zhou
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Fumitoshi Matoba
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ryohei Matsuno
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yusuke Wakayama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Teppei Yamada
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Gjerde N, Del Giudice A, Zhu K, Knudsen KD, Galantini L, Schillén K, Nyström B. Synthesis and Characterization of a Thermoresponsive Copolymer with an LCST-UCST-like Behavior and Exhibiting Crystallization. ACS OMEGA 2023; 8:31145-31154. [PMID: 37663484 PMCID: PMC10468772 DOI: 10.1021/acsomega.3c03162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
In this work, the diblock copolymer methoxy-poly(ethylene glycol)-block-poly(ε-caprolactone) (MPEG-b-PCL) was synthesized with a block composition that allows this polymer in aqueous media to possess both an upper critical solution temperature (UCST) and a lower critical solution temperature (LCST) over a limited temperature interval. The value of the UCST, associated with crystallization of the PCL-block, depended on heating (H) or cooling (C) of the sample and was found to be CPUCSTH = 32 °C and CPUCSTC = 23 °C, respectively. The LCST was not affected by the heating or cooling scans; assumed a value of 52 °C (CPLCSTH = CPLCSTC). At intermediate temperatures (e.g., 45 °C), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM) showed that the solution consisted of a large population of spherical core-shell particles and some self-assembled rodlike objects. At low temperatures (below 32 °C), differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) in combination with SAXS disclosed the formation of crystals with a cylindrical core-shell structure. Cryo-TEM supported a thread-like appearance of the self-assembled polymer chains. At temperatures above 52 °C, incipient phase separation took place and large aggregation complexes of amorphous morphology were formed. This work provides insight into the intricate interplay between UCST and LCST and the type of structures formed at these conditions in aqueous solutions of MPEG-b-PCL diblock copolymers.
Collapse
Affiliation(s)
- Natalie
Solfrid Gjerde
- Department
of Chemistry, “Sapienza” University
of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Alessandra Del Giudice
- Department
of Chemistry, “Sapienza” University
of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Kaizheng Zhu
- Faculty
of Engineering, Østfold University
College, P.O. Box 700, 1757 Halden, Norway
| | | | - Luciano Galantini
- Department
of Chemistry, “Sapienza” University
of Rome, P.O. Box 34-Roma 62, Piazzale A. Moro 5, I-00185 Roma, Italy
| | - Karin Schillén
- Division
of Physical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Bo Nyström
- Department
of Chemistry, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway
| |
Collapse
|
4
|
Ruzzi V, Buzzaccaro S, Piazza R. Thermal Lens Measurements of Thermal Expansivity in Thermosensitive Polymer Solutions. Polymers (Basel) 2023; 15:polym15051283. [PMID: 36904524 PMCID: PMC10007145 DOI: 10.3390/polym15051283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The weak absorption of a laser beam generates in a fluid an inhomogeneous refractive index profile acting as a negative lens. This self-effect on beam propagation, known as Thermal Lensing (TL), is extensively exploited in sensitive spectroscopic techniques, and in several all-optical methods for the assessment of thermo-optical properties of simple and complex fluids. Using the Lorentz-Lorenz equation, we show that the TL signal is directly proportional to the sample thermal expansivity α, a feature allowing minute density changes to be detected with high sensitivity in a tiny sample volume, using a simple optical scheme. We took advantage of this key result to investigate the compaction of PniPAM microgels occurring around their volume phase transition temperature, and the temperature-driven formation of poloxamer micelles. For both these different kinds of structural transitions, we observed a significant peak in the solute contribution to α, indicating a decrease in the overall solution density-rather counterintuitive evidence that can nevertheless be attributed to the dehydration of the polymer chains. Finally, we compare the novel method we propose with other techniques currently used to obtain specific volume changes.
Collapse
|
5
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Mendrek B, Oleszko-Torbus N, Teper P, Kowalczuk A. Towards a modern generation of polymer surfaces: nano- and microlayers of star macromolecules and their design for applications in biology and medicine. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Gęca M, Wiśniewska M, Urban T, Nowicki P. Temperature Effect on Ionic Polymers Removal from Aqueous Solutions Using Activated Carbons Obtained from Biomass. MATERIALS (BASEL, SWITZERLAND) 2022; 16:ma16010350. [PMID: 36614695 PMCID: PMC9822277 DOI: 10.3390/ma16010350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 06/12/2023]
Abstract
The main aim of this study was the determination of temperature influence on adsorption mechanisms of anionic poly(acrylic acid) (PAA) and cationic polyethylenimine (PEI) on the surface of activated carbons (AC) obtained via chemical activation of nettle (NE) and sage (SA) herbs. All measurements were performed at pH 3 at three temperature values, i.e., 15, 25 and 35 °C. The adsorption/desorption of these polymers from single and mixed solution of adsorbates was also investigated. The viscosity studies were additionally performed to obtain hydrodynamic radius values characterizing polymeric macromolecules conformation in the solution. These data are very important for the explanation of changes of linear dimensions of polymer chains with the rise of temperature caused by the modification of polymer-solvent interactions. Moreover, the XPS studies for the systems showing the highest adsorbed amounts in the specific temperature conditions were carried out. These were the systems containing PEI, PAA and NE-AC activated carbon at 25 °C. In such a case, the maximum adsorption capacity towards PAA macromolecules from a single solution of adsorbate reaches the value of 198.12 mg/g. Additionally, the thermodynamic parameters including the free energies of adsorption, as well as changes in free enthalpy and entropy were calculated.
Collapse
Affiliation(s)
- Marlena Gęca
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Małgorzata Wiśniewska
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Teresa Urban
- Department of Radiochemistry and Environmental Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
8
|
Münch AS, Simon F, Merlitz H, Uhlmann P. Investigation of an oleophobic-hydrophilic polymer brush with switchable wettability for easy-to-clean coatings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Flemming P, Fery A, Münch AS, Uhlmann P. Does Chain Confinement Affect Thermoresponsiveness? A Comparative Study of the LCST and Induced UCST Transition of Tailored Grafting-to Polyelectrolyte Brushes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Patricia Flemming
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Fery
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - Alexander S. Münch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Petra Uhlmann
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| |
Collapse
|
10
|
Sixdenier L, Augé A, Zhao Y, Marie E, Tribet C. UCST-Type Polymer Capsules Formed by Interfacial Complexation. ACS Macro Lett 2022; 11:651-656. [PMID: 35570812 DOI: 10.1021/acsmacrolett.2c00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Formation of aqueous-core polymer capsules exhibiting an upper critical solution temperature (UCST) was achieved using surfactant-polymer interfacial complexation in water-in-oil inverse emulsions. In fluorinated oil, Coulombic interactions between Krytox, an anionic oil-soluble surfactant, and a cationic poly(lysine) grafted with poly(acrylamide-co-acrylonitrile) enabled the formation of an adsorbed polymer shell at the surface of water droplets. The thermoresponsiveness of the polymer shell was assessed by fluorescence microscopy with and without the presence of nanoparticles, including gold particles. We show that, above the cloud point, polymers with a balanced fraction of UCST grafts form flat adlayers that (i) spontaneously entrap nanoparticles upon cooling and (ii) switch from fluid-like dynamics at high temperature to solid-like dynamics below the cloud point. This system offers a straightforward mean to prepare temperature-sensitive capsules in mild, biocompatible conditions and to concentrate nanoparticles (including nanoheaters) in their shell.
Collapse
Affiliation(s)
- Lucas Sixdenier
- P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Amélie Augé
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - Emmanuelle Marie
- P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christophe Tribet
- P.A.S.T.E.U.R., Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
11
|
Bariwal J, Ma H, Altenberg GA, Liang H. Nanodiscs: a versatile nanocarrier platform for cancer diagnosis and treatment. Chem Soc Rev 2022; 51:1702-1728. [PMID: 35156110 DOI: 10.1039/d1cs01074c] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic-inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs.
Collapse
Affiliation(s)
- Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hairong Ma
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Guillermo A Altenberg
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Hongjun Liang
- Department of Cell Physiology and Molecular Biophysics, and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
12
|
Pavlenko SA, Larin DE, Govorun EN. Self-assembly of hydrophobic-amphiphilic diblock copolymers in solution. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:125001. [PMID: 34942610 DOI: 10.1088/1361-648x/ac462c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Thermoresponsive polymers are usually characterized by a locally amphiphilic chain structure and their self-assembly in solution is controlled, in particular, by the surface activity of the monomer units or side chains. We theoretically study the condensed state of a single diblock copolymer molecule consisting of a hydrophobic block and amphiphilic block with hydrophobic groups in the backbone and pendant polar groups. The equilibrium parameters of the polymer globules of different shapes are determined using the mean-field approach to determine the most favorable structure. Morphological diagrams of condensed macromolecules are presented depending on the chain length, amphiphilic block fraction, interaction parameters, and pendant volume and length. The diagrams are compared with those of a copolymer molecule with the same fraction of amphiphilic monomer units which are regularly distributed along the chain. The diblock copolymer molecule is found to form a single spherical or flattened particle, with the core from the hydrophobic block, or a granular micelle consisting of spherical or nearly spherical particles, in agreement with the experimental data in the literature. The optimal chain parameters for self-assembly into a stable single core-shell particle are predicted.
Collapse
Affiliation(s)
- Sophia A Pavlenko
- Faculty of Physics, M V Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow, Russia
- A V Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Prosp. 29, Moscow, Russia
| | - Daniil E Larin
- A V Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Prosp. 29, Moscow, Russia
- A N Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova ul. 28, Moscow, Russia
| | - Elena N Govorun
- Faculty of Physics, M V Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow, Russia
- A V Topchiev Institute of Petrochemical Synthesis RAS, Leninsky Prosp. 29, Moscow, Russia
| |
Collapse
|
13
|
Aliakseyeu A, Hlushko R, Sukhishvili SA. Nonionic star polymers with upper critical solution temperature in aqueous solutions. Polym Chem 2022. [DOI: 10.1039/d2py00216g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Novel UCST star poly(2-ureido methacrylates) synthesized via the ARGET ATRP technique showed enhanced trapping abilities of model drug molecules.
Collapse
Affiliation(s)
- Aliaksei Aliakseyeu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Raman Hlushko
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Svetlana A. Sukhishvili
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77843, USA
| |
Collapse
|