1
|
Xue L, Chen W, Zheng P, Geng J, Zhang F, Li X, Zhang Z, Hu X. Catalyst-Free Oxidation of Styrene to Styrene Oxide Using Circulating Microdroplets in an Oxygen Atmosphere. J Am Chem Soc 2024; 146:26909-26915. [PMID: 39300790 DOI: 10.1021/jacs.4c08018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Water microdroplets possess unique interfacial properties that enable chemical reactions to occur spontaneously and increase the reaction rate by orders of magnitude. In this study, water containing styrene (SY) was cyclically sprayed into the air to form microdroplets with an average diameter of 6.7 μm. These microdroplets allowed SY to be oxidized into styrene oxide (SO) without catalysts. No oxidation products of SY were observed in the bulk solution under the same conditions, while in microdroplet reactions 4.2% conversion of SY with approximately 3.1 mM SO was detected. Compared with the traditional spraying microdroplet method, the oxidation product concentration was enhanced by 1000 times. Experiments proved that an aerobic environment boosts SY oxidation, leading to a proposed dual-path hydrogen peroxide (H2O2) oxidation mechanism at the droplet interface. This was confirmed by density functional theory calculations (DFT). Furthermore, in the presence of additional ultrasound, the SY oxidation process initiated by water droplets can be further enhanced, and 7.0% conversion of SY with approximately 5.2 mM SO was detected. The cyclic spraying method greatly enhanced the oxidation product concentration, showing the potential for large scale chemical production using microdroplets.
Collapse
Affiliation(s)
- Lian Xue
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Weida Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Peng Zheng
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Jiao Geng
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Feng Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Xinyao Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Zhibing Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| | - Xingbang Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
2
|
Tumuluri K, Abu-Dahrieh JK, Mathiyalagan K, Munusamy Kalidhas A, Perumal T, Srinivasan S, Mangesh VL, Siva Kumar N, Alreshaidan SB, Chandrasekaran K, Arunachalam V, Al-Fatesh AS. Selective Oxidation of Cyclohexene over the Mesoporous H-Beta Zeolite on Copper/Nickel Bimetal Catalyst in Continuous Reactor. ACS OMEGA 2024; 9:25800-25811. [PMID: 38911787 PMCID: PMC11191118 DOI: 10.1021/acsomega.3c10503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024]
Abstract
The copper/nickel-metal on commercial H-Beta zeolite supports was synthesized with different wt % (Ni) of 5, 10, 15, and 20, and was used in the cyclohexene epoxidation process. The synthesized catalyst has been used in a continuous reactor for the cyclohexene epoxidation process, with mild conditions and H2O2 as an oxidant. The catalytic performance was ascertained by adjusting parameters such as the temperature, pressure, WHSV, reaction time, and solvents. The catalytic performance showed the resulting yield in both cyclohexene conversion and selectivity was more than 98.5%. The catalyst's textural attributes, morphology, chemical composition, and stability were determined using FT-IR, XRD, BET, HR-SEM, and TPD. The most active catalyst among those that were synthesized was evaluated, and the reaction parameters were selected to optimize yield and conversion. The H-Beta/Cu/Ni (15%) catalyst has the best conversion (98.5%) and selectivity (100%) for cyclohexene among the catalysts examined. Cu and Ni(15%) metals were successfully added to the H-Beta zeolite, causing little damage to the crystalline structure and resulting in good reusability over five cycles, as well as little loss of catalytic selectivity. Acetonitrile was the solvent that provided the highest conversion and selectivity among the others. These findings show that H-Beta/Cu/Ni bimetallic catalysts have the potential to be effective epoxidation catalysts. Because of their outstanding conversion and selectivity, the continuous reaction technique used in this work makes them appropriate for industrial production-level applications.
Collapse
Affiliation(s)
- Kanthimathi Tumuluri
- Department
of Mechanical Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh 522502, India
| | - Jehad K. Abu-Dahrieh
- School
of Chemistry and Chemical Engineering, Queen’s
University Belfast, Belfast BT9 5AG, U.K.
| | - Kulothungan Mathiyalagan
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Aravindan Munusamy Kalidhas
- Department
of Mechanical Engineering, Faculty of Engineering and Technology, Jain Deemed to Be University, Bengaluru 560004, India
| | - Tamizhdurai Perumal
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Santhosh Srinivasan
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | | | - Nadavala Siva Kumar
- Department
of Chemical Engineering, College of Engineering,
King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Salwa B. Alreshaidan
- Department
of Chemistry, Faculty of Science, King Saud
University, P.O. Box
800, Riyadh 11451, Saudi Arabia
| | - Kavitha Chandrasekaran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Vijayaraj Arunachalam
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to the University of Madras,
Chennai), 833, Gokul Bagh, E.V.R. Periyar Road, Arumbakkam, Chennai 600 106, Tamil Nadu, India
| | - Ahmed S. Al-Fatesh
- Department
of Chemical Engineering, College of Engineering,
King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
3
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Okamoto K, Higuma R, Muta K, Fukumoto K, Tsuchihashi Y, Ashikari Y, Nagaki A. External Flash Generation of Carbenoids Enables Monodeuteration of Dihalomethanes. Chemistry 2023; 29:e202301738. [PMID: 37300319 DOI: 10.1002/chem.202301738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
In this study, incorporation of one deuterium atom was achieved by H-D exchange of one of the two identical methylene protons in various dihalomethanes (halogen=Cl, Br, and I) through a rapid-mixing microflow reaction of lithium diisopropylamide as a strong base and deuterated methanol as a deuteration reagent. Generation of highly unstable carbenoid intermediate and suppression of its decomposition were successfully controlled under high flow-rate conditions. Monofunctionalization of diiodomethane afforded various building blocks composed of boryl, stannyl, and silyl groups. The monodeuterated diiodomethane, which served as a deuterated C1 source, was subsequently subjected to diverted functionalization methods to afford various products including biologically important molecules bearing isotope labelling at specific positions and homologation products with monodeuteration.
Collapse
Affiliation(s)
- Kazuhiro Okamoto
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Ryosuke Higuma
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kensuke Muta
- Fundamental Chemical Research Center, Central Glass Co., Ltd., 17-5, Nakadai 2-chome, Kawagoe City, Saitama, 350-1159, Japan
| | - Keita Fukumoto
- Department of Synthetic and Biological Chemistry Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yuta Tsuchihashi
- Taiyo Nippon Sanso Corp., 10 Okubo, Tsukuba-shi, Ibaraki, 300-2611, Japan
| | - Yosuke Ashikari
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Aiichiro Nagaki
- Department of Chemistry, Graduate School of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|