1
|
Ariff PNAM, Sedgwick DM, Iwasawa K, Kiyono T, Sumii Y, Ikuta R, Uranagase M, Kawahara H, Fustero S, Ogata S, Shibata N. Design and Mechanistic Insights into α-Helical p-Terphenyl Guanidines as Potent Small-Molecule Antifreeze Agents. J Am Chem Soc 2024; 146:26435-26441. [PMID: 39233468 DOI: 10.1021/jacs.4c09389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Ice formation is a critical challenge across multiple fields, from industrial applications to biological preservation. Inspired by natural antifreeze proteins, we designed and synthesized a new class of small-molecule antifreezes based on α-helical p-terphenyl scaffolds with guanidine side chains. These p-terphenyl guanidines 1, among the smallest molecules that mimic α-helical structures, exhibit potent ice recrystallization inhibition (IRI) activity, similar to that of existing large α-helical antifreeze compounds. The most effective compound, 1a, with four C1-carbon guanidine moieties, demonstrated a superior IRI activity of 0.46 (1 mg/mL). Using molecular dynamics simulations with density-functional theory and separate pKa calculations, we elucidated the mechanisms underlying their antifreeze properties.
Collapse
Affiliation(s)
- Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Daniel M Sedgwick
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, Burjassot, Valencia 46100, Spain
| | - Kenta Iwasawa
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Tatsuki Kiyono
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Yuji Sumii
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Ryoya Ikuta
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Masayuki Uranagase
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Hidehisa Kawahara
- KUREi Co., Ltd., 404 Center for Innovation & Creativity, Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, Burjassot, Valencia 46100, Spain
| | - Shuji Ogata
- Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-Ku, Nagoya 466-8555, Japan
| |
Collapse
|
2
|
Aptamers with Self-Loading Drug Payload and pH-Controlled Drug Release for Targeted Chemotherapy. Pharmaceutics 2021; 13:pharmaceutics13081221. [PMID: 34452182 PMCID: PMC8398837 DOI: 10.3390/pharmaceutics13081221] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
Doxorubicin (DOX) is a common anti-tumor drug that binds to DNA or RNA via non-covalent intercalation between G-C sequences. As a therapeutic agent, DOX has been used to form aptamer–drug conjugates for targeted cancer therapy in vitro and in vivo. To improve the therapeutic potential of aptamer–DOX conjugates, we synthesized trifurcated Newkome-type monomer (TNM) structures with three DOX molecules bound through pH-sensitive hydrazone bonds to formulate TNM-DOX. The aptamer–TNM–DOX conjugate (Apt–TNM-DOX) was produced through a simple self-loading process. Chemical validation revealed that Apt–TNM-DOX stably carried high drug payloads of 15 DOX molecules per aptamer sequence. Functional characterization showed that DOX payload release from Apt–TNM-DOX was pH-dependent and occurred at pH 5.0, which reflects the microenvironment of tumor cell lysosomes. Further, Apt–TNM-DOX specifically targeted lymphoma cells without affecting off-target control cells. Aptamer-mediated cell binding resulted in the uptake of Apt–TNM-DOX into targeted cells and the release of DOX payload within cell lysosomes to inhibit growth of targeted lymphoma cells. The Apt–TNM-DOX provides a simple, non-toxic approach to develop aptamer-based targeted therapeutics and may reduce the non-specific side effects associated with traditional chemotherapy.
Collapse
|
3
|
Urbańczyk M, Jewgiński M, Krzciuk-Gula J, Góra J, Latajka R, Sewald N. Synthesis and conformational preferences of short analogues of antifreeze glycopeptides (AFGP). Beilstein J Org Chem 2019; 15:1581-1591. [PMID: 31435440 PMCID: PMC6664394 DOI: 10.3762/bjoc.15.162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
Antifreeze glycoproteins are a class of biological agents which enable living at temperatures below the freezing point of the body fluids. Antifreeze glycopeptides usually consist of repeating tripeptide unit (-Ala-Ala-Thr*-), glycosylated at the threonine side chain. However, on the microscopic level, the mechanism of action of these compounds remains unclear. As previous research has shown, antifreeze activity of antifreeze glycopeptides strongly relies on the overall conformation of the molecule as well an on the stereochemistry of amino acid residues. The desired monoglycosylated analogues with acetylated amino termini and the carboxy termini in form of N-methylamide have been synthesized. Conformational nuclear magnetic resonance (NMR) studies of the designed analogues have shown a strong influence of the stereochemistry of amino acid residues on the peptide chain stability, which could be connected to the antifreeze activity of these compounds. A better understanding of the mechanism of action of antifreeze glycopeptides would allow applying these materials, e.g., in food industry and biomedicine.
Collapse
Affiliation(s)
- Małgorzata Urbańczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, Wroclaw, PL-50-370, Poland
| | - Michał Jewgiński
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, Wroclaw, PL-50-370, Poland
| | - Joanna Krzciuk-Gula
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, Wroclaw, PL-50-370, Poland
| | - Jerzy Góra
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, Wroclaw, PL-50-370, Poland
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspianskiego 27, Wroclaw, PL-50-370, Poland
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Department of Chemistry, Bielefeld University, Universitätsstraße 25, Bielefeld, D-33615, Germany
| |
Collapse
|
4
|
Bello C, Rovero P, Papini AM. Just a spoonful of sugar: Short glycans affect protein properties and functions. J Pept Sci 2019; 25:e3167. [PMID: 30924227 DOI: 10.1002/psc.3167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/09/2022]
Abstract
Glycosylation has a strong impact on the chemical and physical properties of proteins and on their activity. The heterogeneous nature of this modification complicates the elucidation of the role of each glycan, thus slowing down the progress in glycobiology. Nevertheless, the great advances recently made in protein engineering and in the chemical synthesis, and semisynthesis of glycoproteins are giving impulse to the field, fostering important discoveries. In this review, we report on the findings of the last two decades on the importance that the attachment site, linkage, and composition of short glycans have in affecting protein properties and functions.
Collapse
Affiliation(s)
- Claudia Bello
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, Cergy-Pontoise CEDEX, France
| |
Collapse
|
5
|
Pandey P, Mallajosyula SS. Elucidating the role of key structural motifs in antifreeze glycoproteins. Phys Chem Chem Phys 2019; 21:3903-3917. [PMID: 30702099 DOI: 10.1039/c8cp06743k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Antifreeze glycoproteins (AFGPs) are distinctively riveting class of bio-macromolecules, which endows the survival of organisms inhabiting polar and subpolar regions. These proteins are believed to hinder microscopic freezing by interacting with embryonic ice crystals and precluding their further growth. The underlying molecular mechanism by which AFGPs bind to ice has remained elusive due to insufficient structural characterization, with conflicting hypotheses on the possible binding mode of AFGPs - either via the hydrophobic peptide backbone or via the hydrophilic carbohydrate side chains - when interacting with ice. Chemical synthesis has allowed researchers to access synthetic variants of natural AFGPs. These studies revealed that AFGPs exhibit huge variations in their thermal hysteresis and ice shaping behavior with only slight structural variations, especially to the carbohydrate side chains. Four key structural motifs were identified as crucial to AFGP activity: the presence of a threonine γ-methyl group, an α-glycosidic carbohydrate-protein linkage, an acetylamide group (-NHCOCH3) at the C2 position of the carbohydrate linked to the protein, and the presence of carbohydrate hydroxyl groups. In this study, we use molecular dynamics (MD) simulations to probe the microscopic properties of water accompanying these structural variations of AFGPs. We find that these variations primarily influence the conformation space of AFGPs and also crucially control their hydration dynamics. Owing to the disordered nature of AFGPs we use Markov-state modeling to identify the conformational preferences of AFGPs. The simulations reveal the importance of steric bulk, intra-molecular carbohydrate-protein H-bonds and conformational preferences (α- vs. β-linkages) in controlling the spatial segregation of the hydrophilic and hydrophobic regions of AFGPs. We hypothesize that the hydrophobic component of AFGPs is crucial to their binding to ice, which determines the ice shaping ability of AFGPs. However, the hydrophilic carbohydrate hydroxyl groups and their ability to form water bridges control the subsequent hydration dynamics, which is key to the antifreeze properties. Investigating the tetrahedral order parameter of water molecules around the carbohydrates revealed competition between solute- and bulk-influenced solvent structures, with maximum restructuring being observed in the interfacial region 2.5-4.5 Å away from the AFGPs.
Collapse
Affiliation(s)
- Poonam Pandey
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Simkheda, Gandhinagar, Gujarat, India.
| | | |
Collapse
|
6
|
Rai J. Peptide and protein mimetics by retro and retroinverso analogs. Chem Biol Drug Des 2019; 93:724-736. [PMID: 30582286 DOI: 10.1111/cbdd.13472] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
Abstract
Retroinverso analog of a natural polypeptide can sometimes mimic the structure and function of the natural peptide. The additional advantage of using retroinverso analog is that it is resistant to proteolysis. The retroinverso analogs have peptide sequence in reverse direction with respect to natural peptide and also have chirality of amino acid inverted from L to D. The D amino acids cannot be recognized by common proteases of the body; therefore, these peptides will not be degraded easily and have a longer-lasting effect as vaccine and inhibitor drugs. There have been many contested propositions about the geometric relationship between a peptide and its retro, inverso, or retroinverso analog. A retroinverso analog sometimes fails to adopt the structure that can mimic the function of the natural peptide. In such cases, partial retroinverso analog and other modifications can help in achieving the desired structure and function. Here, we review the theory, major experimental attempts, prediction methods, and alternative strategies related to retroinverso peptidomimetics.
Collapse
|
7
|
Sangabathuni S, Murthy RV, Gade M, Bavireddi H, Toraskar S, Sonar MV, Ganesh KN, Kikkeri R. Modeling Glyco-Collagen Conjugates Using a Host-Guest Strategy To Alter Phenotypic Cell Migration and in Vivo Wound Healing. ACS NANO 2017; 11:11969-11977. [PMID: 29077384 DOI: 10.1021/acsnano.7b01789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The constructs and study of combinatorial libraries of structurally defined homologous extracellular matrix (ECM) glycopeptides can significantly accelerate the identification of cell surface markers involved in a variety of physiological and pathological processes. Herein, we present a simple and reliable host-guest approach to design a high-throughput glyco-collagen library to modulate the primary and secondary cell line migration process. 4-Amidoadamantyl-substituted collagen peptides and β-cyclodextrin appended with mono- or disaccharides were used to construct self-assembled glyco-collagen conjugates (GCCs), which were found to be thermally stable, with triple-helix structures and nanoneedles-like morphologies that altered cell migration processes. We also investigated the glycopeptide's mechanisms of action, which included interactions with integrins and cell signaling kinases. Finally, we report murine wound models to demonstrate the real-time application of GCCs. As a result of our observations, we claim that the host-guest model of ECM glycopeptides offers an effective tool to expedite identification of specific glycopeptides to manipulate cell morphogenesis, cell differentiation metastatic processes, and their biomedical applications.
Collapse
Affiliation(s)
- Sivakoti Sangabathuni
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | | | - Madhuri Gade
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Harikrishna Bavireddi
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Suraj Toraskar
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Mahesh V Sonar
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Krishna N Ganesh
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research , Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
8
|
Ansari JM, Abraham NM, Massaro J, Murphy K, Smith-Carpenter J, Fikrig E. Anti-Biofilm Activity of a Self-Aggregating Peptide against Streptococcus mutans. Front Microbiol 2017; 8:488. [PMID: 28392782 PMCID: PMC5364132 DOI: 10.3389/fmicb.2017.00488] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Streptococcus mutans is the primary agent of dental cavities, in large part due to its ability to adhere to teeth and create a molecular scaffold of glucan polysaccharides on the tooth surface. Disrupting the architecture of S. mutans biofilms could help undermine the establishment of biofilm communities that cause cavities and tooth decay. Here we present a synthetic peptide P1, derived from a tick antifreeze protein, which significantly reduces S. mutans biofilm formation. Incubating cells with this peptide decreased biofilm biomass by approximately 75% in both a crystal violet microplate assay and an in vitro tooth model using saliva-coated hydroxyapatite discs. Bacteria treated with peptide P1 formed irregular biofilms with disconnected aggregates of cells and exopolymeric matrix that readily detached from surfaces. Peptide P1 can bind directly to S. mutans cells but does not possess bactericidal activity. Anti-biofilm activity was correlated with peptide aggregation and β-sheet formation in solution, and alternative synthetic peptides of different lengths or charge distribution did not inhibit biofilms. This anti-biofilm peptide interferes with S. mutans biofilm formation and architecture, and may have future applications in preventing bacterial buildup on teeth.
Collapse
Affiliation(s)
| | - Nabil M Abraham
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New HavenCT, USA; Howard Hughes Medical Institute, Chevy ChaseMD, USA
| | - Jenna Massaro
- Department of Biology, Fairfield University, Fairfield CT, USA
| | - Kelsey Murphy
- Department of Biology, Fairfield University, Fairfield CT, USA
| | | | - Erol Fikrig
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New HavenCT, USA; Howard Hughes Medical Institute, Chevy ChaseMD, USA
| |
Collapse
|
9
|
Urbańczyk M, Góra J, Latajka R, Sewald N. Antifreeze glycopeptides: from structure and activity studies to current approaches in chemical synthesis. Amino Acids 2016; 49:209-222. [PMID: 27913993 PMCID: PMC5274654 DOI: 10.1007/s00726-016-2368-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/18/2016] [Indexed: 01/02/2023]
Abstract
Antifreeze glycopeptides (AFGPs) are a class of biological antifreeze agents found predominantly in Arctic and Antarctic species of fish. They possess the ability to regulate ice nucleation and ice crystal growth, thus creating viable life conditions at temperatures below the freezing point of body fluids. AFGPs usually consist of 4–55 repetitions of the tripeptide unit Ala–Ala–Thr that is O-glycosylated at the threonine side chains with β-d-galactosyl-(1 → 3)-α-N-acetyl-d-galactosamine. Due to their interesting properties and high antifreeze activity, they have many potential applications, e.g., in food industry and medicine. Current research is focused towards understanding the relationship between the structural preferences and the activity of the AFGPs, as well as developing time and cost efficient ways of synthesis of this class of molecules. Recent computational studies in conjunction with experimental results from NMR and THz spectroscopies were a possible breakthrough in understanding the mechanism of action of AFGPs. At the moment, as a result of these findings, the focus of research is shifted towards the analysis of behaviour of the hydration shell around AFGPs and the impact of water-dynamics retardation caused by AFGPs on ice crystal growth. In the field of organic synthesis of AFGP analogues, most of the novel protocols are centered around solid-phase peptide synthesis and multiple efforts are made to optimize this approach. In this review, we present the current state of knowledge regarding the structure and activity of AFGPs, as well as approaches to organic synthesis of these molecules with focus on the most recent developments.
Collapse
Affiliation(s)
- Małgorzata Urbańczyk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 29, 50-370, Wrocław, Poland
| | - Jerzy Góra
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 29, 50-370, Wrocław, Poland
| | - Rafał Latajka
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże St. Wyspiańskiego 29, 50-370, Wrocław, Poland.
| | - Norbert Sewald
- Organic Chemistry III, Department of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615, Bielefeld, Germany.
| |
Collapse
|
10
|
Sletten ET, Ramadugu SK, Nguyen HM. Utilization of bench-stable and readily available nickel(II) triflate for access to 1,2-cis-2-aminoglycosides. Carbohydr Res 2016; 435:195-207. [PMID: 27816838 DOI: 10.1016/j.carres.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
Abstract
The utilization of substoichiometric amounts of commercially available nickel(II) triflate as an activator in the reagent-controlled glycosylation reaction for the stereoselective construction of biologically relevant targets containing 1,2-cis-2-amino glycosidic linkages is reported. This straightforward and accessible methodology is mild, operationally simple and safe through catalytic activation by readily available Ni(OTf)2 in comparison to systems employing our previously in-house prepared Ni(4-F-PhCN)4(OTf)2. We anticipate that the bench-stable and inexpensive Ni(OTf)2, coupled with little to no extra laboratory training to set up the glycosylation reaction and no requirement of specialized equipment, should make this methodology be readily adopted by non-carbohydrate specialists. This report further highlights the efficacy of Ni(OTf)2 to prepare several bioactive motifs, such as blood type A-type V and VI antigens, heparin sulfate disaccharide repeating unit, aminooxy glycosides, and α-GalNAc-Serine conjugate, which cannot be achieved in high yield and α-selectivity utilizing in-house prepared Ni(4-F-PhCN)4(OTf)2 catalyst. The newly-developed protocol eliminates the need for the synthesis of Ni(4-F-PhCN)4(OTf)2 and is scalable and reproducible. Furthermore, computational simulations in combination with 1H NMR studies analyzed the effects of various solvents on the intramolecular hydrogen bonding network of tumor-associated mucin Fmoc-protected GalNAc-threonine amino acid antigen derivative, verifying discrepancies found that were previously unreported.
Collapse
Affiliation(s)
- Eric T Sletten
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA
| | | | - Hien M Nguyen
- Department of Chemistry, University of Iowa, Iowa City, 52242, USA.
| |
Collapse
|
11
|
Buba AE, Löwe H, Kunz H. Fluorenylmethoxycarbonyl-ProtectedO-Glycosyl-N-methyl Amino Acids: Building Blocks for the Synthesis of Conformationally Tuned Glycopeptide Antigens. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Mallajosyula SS, Vanommeslaeghe K, MacKerell AD. Perturbation of long-range water dynamics as the mechanism for the antifreeze activity of antifreeze glycoprotein. J Phys Chem B 2014; 118:11696-706. [PMID: 25137353 PMCID: PMC4191590 DOI: 10.1021/jp508128d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Very little is known about the mechanism of antifreeze action of antifreeze glycoproteins (AFGPs) present in Antarctic teleost fish. Recent NMR and CD studies assisted with total synthesis of synthetic AFGP variants have provided insight into the structure of short AFGP glycopeptides, though the observations did not yield information on the antifreeze mechanism of action. In this study, we use Hamiltonian replica exchange (HREX) molecular dynamics simulations to probe the structure and surrounding aqueous environments of both the natural (AFGP8) and synthetic (s-AFGP4) AFGPs. AFGPs can adopt both amphiphilic and pseudoamphiphilic conformations, the preference of which is related to the proline content of the peptide. The arrangement of carbohydrates allows the hydroxyl groups on terminal galactose units to form stable water bridges which in turn influence the hydrogen-bond network, structure, and dynamics of the surrounding solvent. Interestingly, these local effects lead to the perturbation of the tetrahedral environment for water molecules in hydration layers far (10.0-12.0 Å) from the AFGPs. This structure-induced alteration of long-range hydration dynamics is proposed to be the major contributor to antifreeze activity, a conclusion that is in line with terahertz spectroscopy experiments. The detailed structure-mechanism correlation provided in this study could lead to the design of better synthetic AFGP variants.
Collapse
Affiliation(s)
- Sairam S Mallajosyula
- Department of Pharmaceutical Sciences, University of Maryland , 20 Penn Street HSF II, Baltimore, Maryland 21201, United States
| | | | | |
Collapse
|
13
|
Bang JK, Lee JH, Murugan RN, Lee SG, Do H, Koh HY, Shim HE, Kim HC, Kim HJ. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Mar Drugs 2013; 11:2013-41. [PMID: 23752356 PMCID: PMC3721219 DOI: 10.3390/md11062013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/22/2013] [Accepted: 05/10/2013] [Indexed: 01/14/2023] Open
Abstract
Antifreeze proteins (AFPs) and glycoproteins (AFGPs), collectively called AF(G)Ps, constitute a diverse class of proteins found in various Arctic and Antarctic fish, as well as in amphibians, plants, and insects. These compounds possess the ability to inhibit the formation of ice and are therefore essential to the survival of many marine teleost fishes that routinely encounter sub-zero temperatures. Owing to this property, AF(G)Ps have potential applications in many areas such as storage of cells or tissues at low temperature, ice slurries for refrigeration systems, and food storage. In contrast to AFGPs, which are composed of repeated tripeptide units (Ala-Ala-Thr)n with minor sequence variations, AFPs possess very different primary, secondary, and tertiary structures. The isolation and purification of AFGPs is laborious, costly, and often results in mixtures, making characterization difficult. Recent structural investigations into the mechanism by which linear and cyclic AFGPs inhibit ice crystallization have led to significant progress toward the synthesis and assessment of several synthetic mimics of AFGPs. This review article will summarize synthetic AFGP mimics as well as current challenges in designing compounds capable of mimicking AFGPs. It will also cover our recent efforts in exploring whether peptoid mimics can serve as structural and functional mimics of native AFGPs.
Collapse
Affiliation(s)
- Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Jun Hyuck Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Ravichandran N. Murugan
- Division of Magnetic Resonance, Korea Basic Scienc Institute, Chungbuk 363-833, Korea; E-Mails: (J.K.B.); (R.N.M.)
| | - Sung Gu Lee
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hackwon Do
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
| | - Hye Yeon Koh
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hye-Eun Shim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
| | - Hyun-Cheol Kim
- Division of Polar Climate Research, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mail:
| | - Hak Jun Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 406-840, Korea; E-Mails: (J.H.L.); (S.G.L.); (H.D.); (H.Y.K.); (H.-E.S.)
- Department of Polar Sciences, University of Science and Technology, Incheon 406-840, Korea
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +82-32-760-5550; Fax: +82-32-760-5598
| |
Collapse
|
14
|
Corcilius L, Santhakumar G, Stone RS, Capicciotti CJ, Joseph S, Matthews JM, Ben RN, Payne RJ. Synthesis of peptides and glycopeptides with polyproline II helical topology as potential antifreeze molecules. Bioorg Med Chem 2013; 21:3569-81. [DOI: 10.1016/j.bmc.2013.02.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/01/2013] [Accepted: 02/12/2013] [Indexed: 10/27/2022]
|
15
|
Haridas V, Naik S. Natural macromolecular antifreeze agents to synthetic antifreeze agents. RSC Adv 2013. [DOI: 10.1039/c3ra00081h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|