1
|
|
2
|
Alqurashi AS, Kerrigan J, Savchenko KG. Morphological and molecular characterization of Langdonia walkerae sp. nov. infecting Aristida stricta and A. beyrichiana in longleaf pine-grassland ecosystems in the southeastern USA. Fungal Syst Evol 2022; 8:39-47. [PMID: 35005571 PMCID: PMC8687059 DOI: 10.3114/fuse.2021.08.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
A smut fungus that hinders wiregrass restoration efforts in longleaf pine-grassland ecosystems was collected from Aristida stricta and A. beyrichiana (Poaceae) in three states in the southeastern USA. Morphological and phylogenetic characteristics of this fungus were examined. These data show that the specimens from both plant species were infected by the same fungus and represent a new species of Langdonia. The new species differs morphologically from other species of Langdonia by teliospores being solitary and not compacted into spore balls. Spore wall ornamentation and teliospore size also differ from other Langdonia species. Phylogenetic analyses of DNA sequences of the ITS, LSU, and EF-1α supported separation of the species from A. stricta and A. beyrichiana from other Langdonia species. Based on these results, a new species, Langdonia walkerae, is proposed.
Collapse
Affiliation(s)
- A S Alqurashi
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - J Kerrigan
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA
| | - K G Savchenko
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
3
|
Zuo W, Ökmen B, Depotter JRL, Ebert MK, Redkar A, Misas Villamil J, Doehlemann G. Molecular Interactions Between Smut Fungi and Their Host Plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:411-430. [PMID: 31337276 DOI: 10.1146/annurev-phyto-082718-100139] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Smut fungi are a large group of biotrophic plant pathogens that infect mostly monocot species, including economically relevant cereal crops. For years, Ustilago maydis has stood out as the model system to study the genetics and cell biology of smut fungi as well as the pathogenic development of biotrophic plant pathogens. The identification and functional characterization of secreted effectors and their role in virulence have particularly been driven forward using the U. maydis-maize pathosystem. Today, advancing tools for additional smut fungi such as Ustilago hordei and Sporisorium reilianum, as well as an increasing number of available genome sequences, provide excellent opportunities to investigate in parallel the effector function and evolution associated with different lifestyles and host specificities. In addition, genome analyses revealed similarities in the genomic signature between pathogenic smuts and epiphytic Pseudozyma species. This review elaborates on how knowledge about fungal lifestyles, genome biology, and functional effector biology has helped in understanding the biology of this important group of fungal pathogens. We highlight the contribution of the U. maydis model system but also discuss the differences from other smut fungi, which raises the importance of comparative genomic and genetic analyses in future research.
Collapse
Affiliation(s)
- Weiliang Zuo
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Bilal Ökmen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Jasper R L Depotter
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Malaika K Ebert
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Amey Redkar
- Current affiliation: Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
| | - Johana Misas Villamil
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Gunther Doehlemann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
4
|
Kruse J, Pia¸tek M, Lutz M, Thines M. Broad host range species in specialised pathogen groups should be treated with suspicion - a case study on Entyloma infecting Ranunculus. PERSOONIA 2018; 41:175-201. [PMID: 30728604 PMCID: PMC6344810 DOI: 10.3767/persoonia.2018.41.09] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/20/2018] [Indexed: 11/28/2022]
Abstract
Plant pathogenic smut fungi in the broader sense can be divided into the Ustilaginomycetes, which cause classical smut symptoms with masses of blackish spores being produced in a variety of angiosperms, and the Exobasidiomycetes, which are often less conspicuous, as many do not shed large amounts of blackish spores. The leaf-spot causing members of the genus Entyloma (Entylomatales, Exobasidiomycetes) belong to the latter group. Currently, 172 species that all infect eudicots are included in the genus. Vánky (2012) recognised five Entyloma species on species of Ranunculus s.lat. Two have been reported only from Ficaria verna s.lat., while three, E. microsporum, E. ranunculi-repentis, E. verruculosum, have been reported to have a broad host range, encompassing 30, 26, and 5 species of Ranunculus, respectively. This broad host range is in contrast to the generally high host specificity assumed for species of Entyloma, indicating that they may represent complexes of specialised species. The aim of this study was to investigate Entyloma on Ranunculus s.lat. using multigene phylogenies and morphological comparisons. Phylogenetic analyses on the basis of up to four loci (ITS, atp2, ssc1, and map) showed a clustering of Entyloma specimens according to host species. For some of these Entyloma lineages, names not currently in use were available and reinstated. In addition, Entyloma microsporum s.str. is neotypified. Six novel species are described in this study, namely, Entyloma jolantae on Ranunculus oreophilus, E. klenkei on R. marginatus, E. kochmanii on R. lanuginosus, E. piepenbringiae on R. polyanthemos subsp. nemorosus (type host) and R. repens, E. savchenkoi on R. paludosus, and E. thielii on R. montanus. For all species diagnostic bases and morphological characteristics are provided. The results in this study once more highlight the importance of detailed re-investigation of broad host-range pathogens of otherwise specialised plant pathogen groups.
Collapse
Affiliation(s)
- J. Kruse
- Department of Biosciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | - M. Pia¸tek
- Department of Mycology, W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
| | - M. Lutz
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - M. Thines
- Department of Biosciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
- Integrative Fungal Research Cluster (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Kruse J, Dietrich W, Zimmermann H, Klenke F, Richter U, Richter H, Thines M. Ustilago species causing leaf-stripe smut revisited. IMA Fungus 2018; 9:49-73. [PMID: 30018872 PMCID: PMC6048562 DOI: 10.5598/imafungus.2018.09.01.05] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/12/2018] [Indexed: 12/02/2022] Open
Abstract
Leaf-stripe smuts on grasses are a highly polyphyletic group within Ustilaginomycotina, occurring in three genera, Tilletia, Urocystis, and Ustilago. Currently more than 12 Ustilago species inciting stripe smuts are recognised. The majority belong to the Ustilago striiformis-complex, with about 30 different taxa described from 165 different plant species. This study aims to assess whether host distinct-lineages can be observed amongst the Ustilago leaf-stripe smuts using nine different loci on a representative set. Phylogenetic reconstructions supported the monophyly of the Ustilago striiformis-complex that causes leaf-stripe and the polyphyly of other leaf-stripe smuts within Ustilago. Furthermore, smut specimens from the same host genus generally clustered together in well-supported clades that often had available species names for these lineages. In addition to already-named lineages, three new lineages were observed, and described as new species on the basis of host specificity and molecular differences: namely Ustilago jagei sp. nov. on Agrostis stolonifera, U. kummeri sp. nov. on Bromus inermis, and U. neocopinata sp. nov. on Dactylis glomerata.
Collapse
Affiliation(s)
- Julia Kruse
- Goethe University Frankfurt am Main, Faculty of Biosciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany
| | | | - Horst Zimmermann
- Cluster for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| | | | - Udo Richter
- Traubenweg 8, 06632 Freyburg / Unstrut, Germany
| | | | - Marco Thines
- Goethe University Frankfurt am Main, Faculty of Biosciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany.,Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany.,Cluster for Integrative Fungal Research (IPF), Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Kruse J, Mishra B, Choi YJ, Sharma R, Thines M. New smut-specific primers for multilocus genotyping and phylogenetics of Ustilaginaceae. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1328-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
McTaggart AR, Shivas RG, Boekhout T, Oberwinkler F, Vánky K, Pennycook SR, Begerow D. Mycosarcoma ( Ustilaginaceae), a resurrected generic name for corn smut ( Ustilago maydis) and its close relatives with hypertrophied, tubular sori. IMA Fungus 2016; 7:309-315. [PMID: 27990337 PMCID: PMC5159601 DOI: 10.5598/imafungus.2016.07.02.10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/13/2023] Open
Abstract
Ustilago is a polyphyletic genus of smut fungi found mainly on Poaceae. The development of a taxonomy that reflects phylogeny requires subdivision of Ustilago into smaller monophyletic genera. Several separate systematic analyses have determined that Macalpinomyces mackinlayi, M. tubiformis, Tolyposporella pachycarpa, Ustilago bouriquetii and U. maydis, occupy a unique phylogenetic position within the Ustilaginaceae. A previously introduced monotypic generic name typified by U. maydis, Mycosarcoma, is available to accommodate these species, which resolves one component of polyphyly for Ustilagos.lat. in Ustilaginaceae. An emended description of Mycosarcoma is provided to reflect the morphological synapomorphies of this monophyletic group. A specimen of Ustilago maydis that has had its genome sequenced is designated as a neotype for this species. Taxonomic stability will further be provided by a forthcoming proposal to conserve the name Uredo maydis over Lycoperdon zeae, which has priority by date, in order to preserve the well-known epithet maydis.
Collapse
Affiliation(s)
- Alistair R McTaggart
- Department of Microbiology and Plant Pathology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20, University of Pretoria, Pretoria, 0028, South Africa; Plant Biosecurity Cooperative Research Centre, LPO Box 5012, Bruce 2617, Australia
| | - Roger G Shivas
- Plant Pathology Herbarium, Biosecurity Queensland, Department of Agriculture and Fisheries, GPO Box 267, Brisbane 4001, Queensland, Australia
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity (CBS-KNAW), Utrecht, The Netherlands; Institute of Biodiversity and Ecosystems Dynamics (IBED), University of Amsterdam, Amsterdam
| | - Franz Oberwinkler
- Eberhard-Karls Universität, Auf der Morgenstelle 5, D-72076 Tübingen, Germany
| | - Kálmán Vánky
- Herbarium Ustilaginales Vánky (HUV), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany
| | - Shaun R Pennycook
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland 1142, New Zealand
| | - Dominik Begerow
- Ruhr-Universität Bochum, Geobotanik, ND 03/174, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
9
|
Toh SS, Perlin MH. Resurgence of Less-Studied Smut Fungi as Models of Phytopathogenesis in the Omics Age. PHYTOPATHOLOGY 2016; 106:1244-1254. [PMID: 27111800 DOI: 10.1094/phyto-02-16-0075-rvw] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The smut fungi form a large, diverse, and nonmonophyletic group of plant pathogens that have long served as both important pests of human agriculture and, also, as fertile organisms of scientific investigation. As modern techniques of molecular genetic analysis became available, many previously studied species that proved refractive to these techniques fell by the wayside and were neglected. Now, as the advent of rapid and affordable next-generation sequencing provides genomic and transcriptomic resources for even these "forgotten" fungi, several species are making a comeback and retaking prominent places in phytopathogenic research. In this review, we highlight several of these smut fungi, with special emphasis on Microbotryum lychnidis-dioicae, an anther smut whose molecular genetic tools have finally begun to catch up with its historical importance in classical genetics and now provide mechanistic insights for ecological studies, evolution of host-pathogen interaction, and investigations of emerging infectious disease.
Collapse
Affiliation(s)
- Su San Toh
- First and second authors: Department of Biology and Program on Disease Evolution, University of Louisville, Kentucky; and first author: Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| | - Michael H Perlin
- First and second authors: Department of Biology and Program on Disease Evolution, University of Louisville, Kentucky; and first author: Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore
| |
Collapse
|
10
|
Phylogeny and morphology of Anthracoidea pamiroalaica sp. nov. infecting the endemic sedge Carex koshewnikowii in the Pamir Alai Mts (Tajikistan). Mycol Prog 2015. [DOI: 10.1007/s11557-015-1140-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Piątek M, Lutz M, Yorou NS. A molecular phylogenetic framework for Anthracocystis (Ustilaginales), including five new combinations (inter alia for the asexual Pseudozyma flocculosa), and description of Anthracocystis grodzinskae sp. nov. Mycol Prog 2015. [DOI: 10.1007/s11557-015-1114-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|