1
|
Current Insight into Traditional and Modern Methods in Fungal Diversity Estimates. J Fungi (Basel) 2022; 8:jof8030226. [PMID: 35330228 PMCID: PMC8955040 DOI: 10.3390/jof8030226] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/19/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022] Open
Abstract
Fungi are an important and diverse component in various ecosystems. The methods to identify different fungi are an important step in any mycological study. Classical methods of fungal identification, which rely mainly on morphological characteristics and modern use of DNA based molecular techniques, have proven to be very helpful to explore their taxonomic identity. In the present compilation, we provide detailed information on estimates of fungi provided by different mycologistsover time. Along with this, a comprehensive analysis of the importance of classical and molecular methods is also presented. In orderto understand the utility of genus and species specific markers in fungal identification, a polyphasic approach to investigate various fungi is also presented in this paper. An account of the study of various fungi based on culture-based and cultureindependent methods is also provided here to understand the development and significance of both approaches. The available information on classical and modern methods compiled in this study revealed that the DNA based molecular studies are still scant, and more studies are required to achieve the accurate estimation of fungi present on earth.
Collapse
|
2
|
|
3
|
Cao B, Haelewaters D, Schoutteten N, Begerow D, Boekhout T, Giachini AJ, Gorjón SP, Gunde-Cimerman N, Hyde KD, Kemler M, Li GJ, Liu DM, Liu XZ, Nuytinck J, Papp V, Savchenko A, Savchenko K, Tedersoo L, Theelen B, Thines M, Tomšovský M, Toome-Heller M, Urón JP, Verbeken A, Vizzini A, Yurkov AM, Zamora JC, Zhao RL. Delimiting species in Basidiomycota: a review. FUNGAL DIVERS 2021. [DOI: 10.1007/s13225-021-00479-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
|
5
|
Palumbo F, Squartini A, Barcaccia G, Macolino S, Pornaro C, Pindo M, Sturaro E, Ramanzin M. A multi-kingdom metabarcoding study on cattle grazing Alpine pastures discloses intra-seasonal shifts in plant selection and faecal microbiota. Sci Rep 2021; 11:889. [PMID: 33441587 PMCID: PMC7806629 DOI: 10.1038/s41598-020-79474-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Diet selection by grazing livestock may affect animal performance as well as the biodiversity of grazed areas. Recent DNA barcoding techniques allow to assess dietary plant composition in faecal samples, which may be additionally integrated by the description of gut microbiota. In this high throughput metabarcoding study, we investigated the diversity of plant, fungal and bacterial taxa in faecal samples of lactating cows of two breeds grazing an Alpine semi-natural grassland during summer. The estimated plant composition of the diet comprised 67 genera and 39 species, which varied remarkably during summer, suggesting a decline of the diet forage value with the advancing of the vegetative season. The fungal community included Neocallimastigomycota gut symbionts, but also Ascomycota and Basidiomycota plant parasite and coprophilous taxa, likely ingested during grazing. The proportion of ingested fungi was remarkably higher than in other studies, and varied during summer, although less than that observed for plants. Some variation related to breed was also detected. The gut bacterial taxa remained stable through the summer but displayed a breed-specific composition. The study provided insights in the reciprocal organisms' interactions affecting, and being affected by, the foraging behaviour: plants showed a high temporal variation, fungi a smaller one, while bacteria had practically none; conversely, the same kingdoms showed the opposite gradient of variation as respect to the animal host breed, as bacteria revealed to be the group mostly characterized by host-specificity.
Collapse
Affiliation(s)
- Fabio Palumbo
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Andrea Squartini
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy.
| | - Gianni Barcaccia
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Stefano Macolino
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Cristina Pornaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via Mach 1, S. Michele All'Adige, 38010, Trento, Italy
| | - Enrico Sturaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Maurizio Ramanzin
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova, Campus of Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| |
Collapse
|
6
|
Lücking R, Aime MC, Robbertse B, Miller AN, Ariyawansa HA, Aoki T, Cardinali G, Crous PW, Druzhinina IS, Geiser DM, Hawksworth DL, Hyde KD, Irinyi L, Jeewon R, Johnston PR, Kirk PM, Malosso E, May TW, Meyer W, Öpik M, Robert V, Stadler M, Thines M, Vu D, Yurkov AM, Zhang N, Schoch CL. Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020; 11:14. [PMID: 32714773 PMCID: PMC7353689 DOI: 10.1186/s43008-020-00033-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.
Collapse
Affiliation(s)
- Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
| | - M. Catherine Aime
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907 USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| | - Andrew N. Miller
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820-6970 USA
| | - Hiran A. Ariyawansa
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taipe City, Taiwan
| | - Takayuki Aoki
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Agriculture and Food Research Organization, Genetic Resources Center, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602 Japan
| | - Gianluigi Cardinali
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
| | - Pedro W. Crous
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Irina S. Druzhinina
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Microbiology and Applied Genomics Group, Research Area Biochemical Technology, Institute of Chemical, Environmental & Bioscience Engineering (ICEBE), TU Wien, Vienna, Austria
- Jiangsu Provincial Key Lab of Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, China
| | - David M. Geiser
- Department of Plant Pathology & Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802 USA
| | - David L. Hawksworth
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD UK
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Surrey, TW9 3DS UK
- Geography and Environment, University of Southampton, Southampton, SO17 1BJ UK
- Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Kevin D. Hyde
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- World Agroforestry Centre, East and Central Asia, Kunming, 650201 Yunnan China
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Rai, 50150 Thailand
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Peter R. Johnston
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Manaaki Whenua – Landcare Research, Private Bag 92170, Auckland, 1142 New Zealand
| | | | - Elaine Malosso
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Universidade Federal de Pernambuco, Centro de Biociências, Departamento de Micologia, Laboratório de Hifomicetos de Folhedo, Avenida da Engenharia, s/n Cidade Universitária, Recife, PE 50.740-600 Brazil
| | - Tom W. May
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Royal Botanic Gardens Victoria, Birdwood Avenue, Melbourne, Victoria 3004 Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Westmead Hospital (Research and Education Network), Westmead Institute for Medical Research, Sydney, NSW Australia
| | - Maarja Öpik
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- University of Tartu, 40 Lai Street, 51 005 Tartu, Estonia
| | - Vincent Robert
- Department Pharmaceutical Sciences, University of Perugia, Via Borgo 20 Giugno, 74, Perugia, Italy
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marc Stadler
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department Microbial Drugs, Helmholtz Centre for Infection Research, and German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marco Thines
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60439 Frankfurt (Main); Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt (Main), Germany
| | - Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Andrey M. Yurkov
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Ning Zhang
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901 USA
| | - Conrad L. Schoch
- International Commission on the Taxonomy of Fungi, Champaign, IL USA
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
7
|
Kemler M, Denchev TT, Denchev CM, Begerow D, Piątek M, Lutz M. Host preference and sorus location correlate with parasite phylogeny in the smut fungal genus Microbotryum (Basidiomycota, Microbotryales). Mycol Prog 2020. [DOI: 10.1007/s11557-020-01571-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractThe smut fungal genus Microbotryum (Microbotryales, Pucciniomycotina) contains species that parasitize plants from many different lineages of euasterids, with host specificity of individual parasite species in general being exceptionally high. Additionally, it has been shown that the location of spore production in some species is related to spore dispersal. In this phylogenetic study based on ITS and LSU rDNA data of 57 Microbotryum spp., host spectra and sorus location are mapped on the phylogeny of Microbotryum species in order to understand the macroevolutionary patterns of these two traits. We find that monophyletic parasite clades correspond well with monophyletic host clades and also that monophyletic parasite groups in general produce their spores in the same plant organ. Ancestral state reconstruction inferred the most probable ancestral trait for sorus location being leaves and the most probable ancestral host family for the genus Microbotryum as being the Polygonaceae. According to molecular analyses, a newly sequenced specimen of Ustilago ducellieri, a seed parasite on Arenaria leptoclados, previously treated as synonym of Microbotryum duriaeanum, belongs to a lineage distinct from specimens of M. duriaeanum. A new combination, Microbotryum ducellieri, is accordingly proposed. Taxonomic implications of the presented analyses for the genera Bauhinus and Haradaea are briefly discussed.
Collapse
|
8
|
Denchev TT, Knudsen H, Denchev CM. The smut fungi of Greenland. MycoKeys 2020; 64:1-164. [PMID: 32194322 PMCID: PMC7067898 DOI: 10.3897/mycokeys.64.47380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/09/2020] [Indexed: 11/12/2022] Open
Abstract
The first taxonomic treatment of the smut fungi in Greenland is provided. A total of 43 species in 11 genera are treated and illustrated by photographs of sori, microphotographs of spores in LM and SEM, and distribution maps. Two species, Anthracoidea pseudofoetidae and Urocystis tothii, are recorded as new from North America. Thirteen species, Anthracoidea altera, A. capillaris, A. limosa, A. liroi, A. pseudofoetidae, A. scirpoideae, A. turfosa, Microbotryum lagerheimii, M. stellariae, Schizonella elynae, Stegocintractia luzulae, Urocystis fischeri, and U. tothii, are reported for the first time from Greenland. Three new fungus-host combinations, Anthracoidea capillaris on Carex boecheriana, Anthracoidea pseudofoetidae on Carex maritima, and Urocystis tothii on Juncus biglumis, are given. Five plant species are reported as new hosts of smut fungi in Greenland, namely, Carex nigra for Anthracoidea heterospora, C. canescens for Anthracoidea karii, C. fuliginosa subsp. misandra for Anthracoidea misandrae, C. maritima for Orphanomyces arcticus, and C. fuliginosa subsp. misandra for Schizonella melanogramma. Three species, Microbotryum violaceum s. str. (recorded as 'Ustilago violacea'), Urocystis anemones, and U. junci, which were previously reported from Greenland, are considered wrongly identified. Additional distribution records are given for 12 species from Greenland: Anthracoidea bigelowii, A. caricis, A. elynae, A. lindebergiae, A. misandrae, A. nardinae, A. rupestris, A. scirpi, Schizonella melanogramma, Stegocintractia hyperborea, Urocystis agropyri, and U. sorosporioides. The most numerous distribution groups are the following: circumpolar-alpine and Arctic-alpine species - 14; circumboreal-polar species - 10; and circumpolar and Arctic species - 6. The most widely distributed smut fungi in Greenland were Anthracoidea bigelowii, A. elynae, Microbotryum bistortarum, and M. vinosum. Most species were found in the High Arctic zone (29 species), while from the Low Arctic zone and the Subarctic zone, 26 and 19 species were known, respectively. Ten species, Anthracoidea bigelowii, A. capillaris, A. elynae, Microbotryum bistortarum, M. koenigiae, M. pustulatum, M. silenes-acaulis, M. vinosum, Schizonella elynae, and Urocystis sorosporioides, were recorded from all three zones. Only plants belonging to six families, Cyperaceae, Poaceae, Juncaceae, Ranunculaceae, Caryophyllaceae, and Polygonaceae, out of a total of 55 in the flora of Greenland, hosted smut fungi. Cyperaceae was the plant family with most host species (23). Carex was the genus with the highest number of host species (22). The total number of the host plants (45 species) was 8.5 % out of a total of 532 vascular plants in the flora of Greenland. A new combination in Carex, C. macroprophylla subsp. subfilifolia, is proposed for Kobresia filifolia subsp. subfilifolia.
Collapse
Affiliation(s)
- Teodor T Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev St., 1113 Sofia, Bulgaria.,IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | | | - Cvetomir M Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev St., 1113 Sofia, Bulgaria.,IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| |
Collapse
|
9
|
Bosch J, Czedik-Eysenberg A, Hastreiter M, Khan M, Güldener U, Djamei A. Two Is Better Than One: Studying Ustilago bromivora- Brachypodium Compatibility by Using a Hybrid Pathogen. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1623-1634. [PMID: 31657673 DOI: 10.1094/mpmi-05-19-0148-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pathogenic fungi can have devastating effects on agriculture and health. One potential challenge in dealing with pathogens is the possibility of a host jump (i.e., when a pathogen infects a new host species). This can lead to the emergence of new diseases or complicate the management of existing threats. We studied host specificity by using a hybrid fungus formed by mating two closely related fungi: Ustilago bromivora, which normally infects Brachypodium spp., and U. hordei, which normally infects barley. Although U. hordei was unable to infect Brachypodium spp., the hybrid could. These hybrids also displayed the same mating-type bias that had been observed in U. bromivora and provide evidence of a dominant spore-killer-like system on the sex chromosome of U. bromivora. By analyzing the genomic composition of 109 hybrid strains, backcrossed with U. hordei over four generations, we identified three regions associated with infection on Brachypodium spp. and 75 potential virulence candidates. The most strongly associated region was located on chromosome 8, where seven genes encoding predicted secreted proteins were identified. The fact that we identified several regions relevant for pathogenicity on Brachypodium spp. but that none were essential suggests that host specificity, in the case of U. bromivora, is a multifactorial trait which can be achieved through different subsets of virulence factors.
Collapse
Affiliation(s)
- Jason Bosch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Angelika Czedik-Eysenberg
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Maximilian Hastreiter
- TUM School of Life Sciences, Technical University of Munich, Department of Bioinformatics, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Mamoona Khan
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| | - Ulrich Güldener
- TUM School of Life Sciences, Technical University of Munich, Department of Bioinformatics, Maximus-von-Imhof-Forum 3, 85354 Freising, Germany
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), OT Gatersleben, Corrensstraße 3, D-06466 Stadt Seeland, Germany
| |
Collapse
|
10
|
Thines M. An evolutionary framework for host shifts - jumping ships for survival. THE NEW PHYTOLOGIST 2019; 224:605-617. [PMID: 31381166 DOI: 10.1111/nph.16092] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Host jumping is a process by which pathogens settle in new host groups. It is a cornerstone in the evolution of pathogens, as it leads to pathogen diversification. It is unsurprising that host jumping is observed in facultative pathogens, as they can reproduce even if they kill their hosts. However, host jumps were thought to be rare in obligate biotrophic pathogens, but molecular phylogenetics has revealed that the opposite is true. Here, I review some concepts and recent findings and present several hypotheses on the matter. In short, pathogens evolve and diversify via host jumps, followed by radiation, specialisation and speciation. Host jumps are facilitated by, for example, effector innovations, stress, compatible pathogens and physiological similarities. Host jumping, subsequent establishment, and speciation takes place rapidly - within centuries and millennia rather than over millions of years. If pathogens are unable to evolve into neutral or mutualistic interactions with their hosts, they will eventually be removed from the host population, despite balancing trade-offs. Thus, generally, plant pathogens only survive in the course of evolution if they jump hosts. This is also reflected by the diversity patterns observed in many genera of plant pathogens, where it leads to a mosaic pattern of host groups over time, in which the original host group becomes increasingly obscure.
Collapse
Affiliation(s)
- Marco Thines
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, D-60486, Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
11
|
One stop shop II: taxonomic update with molecular phylogeny for important phytopathogenic genera: 26–50 (2019). FUNGAL DIVERS 2019. [DOI: 10.1007/s13225-019-00418-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Riess K, Schön ME, Ziegler R, Lutz M, Shivas RG, Piątek M, Garnica S. The origin and diversification of the Entorrhizales: deep evolutionary roots but recent speciation with a phylogenetic and phenotypic split between associates of the Cyperaceae and Juncaceae. ORG DIVERS EVOL 2018. [DOI: 10.1007/s13127-018-0384-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|