1
|
Cunningham KL, Sauvola CW, Tavana S, Littleton JT. Regulation of presynaptic Ca 2+ channel abundance at active zones through a balance of delivery and turnover. eLife 2022; 11:78648. [PMID: 35833625 PMCID: PMC9352347 DOI: 10.7554/elife.78648] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/13/2022] [Indexed: 12/03/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr), a key presynaptic determinant of synaptic strength. Although biosynthesis, delivery, and recycling cooperate to establish AZ VGCC abundance, experimentally isolating these distinct regulatory processes has been difficult. Here, we describe how the AZ levels of cacophony (Cac), the sole VGCC-mediating synaptic transmission in Drosophila, are determined. We also analyzed the relationship between Cac, the conserved VGCC regulatory subunit α2δ, and the core AZ scaffold protein Bruchpilot (BRP) in establishing a functional AZ. We find that Cac and BRP are independently regulated at growing AZs, as Cac is dispensable for AZ formation and structural maturation, and BRP abundance is not limiting for Cac accumulation. Additionally, AZs stop accumulating Cac after an initial growth phase, whereas BRP levels continue to increase given extended developmental time. AZ Cac is also buffered against moderate increases or decreases in biosynthesis, whereas BRP lacks this buffering. To probe mechanisms that determine AZ Cac abundance, intravital FRAP and Cac photoconversion were used to separately measure delivery and turnover at individual AZs over a multi-day period. Cac delivery occurs broadly across the AZ population, correlates with AZ size, and is rate-limited by α2δ. Although Cac does not undergo significant lateral transfer between neighboring AZs over the course of development, Cac removal from AZs does occur and is promoted by new Cac delivery, generating a cap on Cac accumulation at mature AZs. Together, these findings reveal how Cac biosynthesis, synaptic delivery, and recycling set the abundance of VGCCs at individual AZs throughout synapse development and maintenance.
Collapse
Affiliation(s)
- Karen L Cunningham
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Chad W Sauvola
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - Sara Tavana
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
2
|
Ji H, Han C. LarvaSPA, A Method for Mounting Drosophila Larva for Long-Term Time-Lapse Imaging. J Vis Exp 2020. [PMID: 32176208 DOI: 10.3791/60792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Live imaging is a valuable approach for investigating cell biology questions. The Drosophila larva is particularly suited for in vivo live imaging because the larval body wall and most internal organs are transparent. However, continuous live imaging of intact Drosophila larvae for longer than 30 min has been challenging because it is difficult to noninvasively immobilizeimmobilizing larvae for a long time. Here we present a larval mounting method called LarvaSPA that allows for continuous imaging of live Drosophila larvae with high temporal and spatial resolution for longer than 10 hours. This method involves partially attaching larvae to the coverslip using a UV-reactive glue and additionally restraining larval movement using a polydimethylsiloxane (PDMS) block. This method is compatible with larvae at developmental stages from second instar to wandering third instar. We demonstrate applications of this method in studying dynamic processes of Drosophila somatosensory neurons, including dendrite growth and injury-induced dendrite degeneration. This method can also be applied to study many other cellular processes that happen near the larval body wall.
Collapse
Affiliation(s)
- Hui Ji
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University
| | - Chun Han
- Weill Institute for Cell and Molecular Biology and Department of Molecular Biology and Genetics, Cornell University;
| |
Collapse
|
3
|
Immunomodulatory effect of mesenchymal stem cells: Cell origin and cell quality variations. Mol Biol Rep 2019; 46:1157-1165. [PMID: 30628022 DOI: 10.1007/s11033-018-04582-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
The immunomodulatory property of mesenchymal stem cells (MSCs) has been previously reported. Still it is unclear if this property can be affected by the cell origin and cell quality. Using primary MSCs expanded from bone marrow (BM-MSCs) and adipose tissue (AD-MSCs) of mice, we investigated whether the immunomodulatory property of MSCs varied with cell origin and cell quality (early- vs. late-passaged BM-MSCs). BM-MSCs (p1) and AD-MSCs (p1) had a typical spindle shape, but morphological changes were observed in late-passaged BM-MSCs (p6). A pathway-focused array showed that the expression of chemokine/cytokine genes varied with different cell origins and qualities. By co-culturing with spleen mononuclear cells (MNC) for 3 days, the expression of CD4 was suppressed by all types of MSCs. By contrast, the expression of CD8 was suppressed by BM-MSCs and increased by AD-MSCs. The expression ratio of CD206 to CD86 was at a comparable level after co-culture with AD-MSCs and BM-MSCs, but was lower with late-passaged BM-MSCs. AD-MSCs highly induced the release of IL6, IL-10 and TGF-β in culture medium. Compared with early-passaged BM-MSCs (p1), late-passaged BM-MSCs (p6) released less TGF-β. Our data suggests that the immunomodulatory properties of MSCs vary with cell origin and cell quality and that BM-MSCs of good quality are likely the optimal source of immunomodulation.
Collapse
|
4
|
Akbergenova Y, Cunningham KL, Zhang YV, Weiss S, Littleton JT. Characterization of developmental and molecular factors underlying release heterogeneity at Drosophila synapses. eLife 2018; 7:38268. [PMID: 29989549 PMCID: PMC6075867 DOI: 10.7554/elife.38268] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/30/2018] [Indexed: 12/14/2022] Open
Abstract
Neurons communicate through neurotransmitter release at specialized synaptic regions known as active zones (AZs). Using biosensors to visualize single synaptic vesicle fusion events at Drosophila neuromuscular junctions, we analyzed the developmental and molecular determinants of release probability (Pr) for a defined connection with ~300 AZs. Pr was heterogeneous but represented a stable feature of each AZ. Pr remained stable during high frequency stimulation and retained heterogeneity in mutants lacking the Ca2+ sensor Synaptotagmin 1. Pr correlated with both presynaptic Ca2+ channel abundance and Ca2+ influx at individual release sites. Pr heterogeneity also correlated with glutamate receptor abundance, with high Pr connections developing receptor subtype segregation. Intravital imaging throughout development revealed that AZs acquire high Pr during a multi-day maturation period, with Pr heterogeneity largely reflecting AZ age. The rate of synapse maturation was activity-dependent, as both increases and decreases in neuronal activity modulated glutamate receptor field size and segregation. To send a message to its neighbor, a neuron releases chemicals called neurotransmitters into the gap – or synapse – between them. The neurotransmitter molecules bind to proteins on the receiver neuron called receptors. But what causes the sender neuron to release neurotransmitter in the first place? The process starts when an electrical impulse called an action potential arrives at the sender cell. Its arrival causes channels in the membrane of the sender neuron to open, so that calcium ions flood into the cell. The calcium ions interact with packages of neurotransmitter molecules, known as synaptic vesicles. This causes some of the vesicles to empty their contents into the synapse. But this process is not particularly reliable. Only a small fraction of action potentials cause vesicles to fuse with the synaptic membrane. How likely this is to occur varies greatly between neurons, and even between synapses formed by the same neuron. Synapses that are likely to release neurotransmitter are said to be strong. They are good at passing messages from the sender neuron to the receiver. Synapses with a low probability of release are said to be weak. But what exactly differs between strong and weak synapses? Akbergenova et al. studied synapses between motor neurons and muscle cells in the fruit fly Drosophila. Each motor neuron forms several hundred synapses. Some of these synapses are 50 times more likely to release neurotransmitter than others. Using calcium imaging and genetics, Akbergenova et al. showed that sender cells at strong synapses have more calcium channels than sender cells at weak synapses. The subtypes and arrangement of receptor proteins also differ between the receiver neurons of strong versus weak synapses. Finally, studies in larvae revealed that newly formed synapses all start out weak and then gradually become stronger. How fast this strengthening occurs depends on how active the neuron at the synapse is. This study has shown, in unprecedented detail, key molecular factors that make some fruit fly synapses more likely to release neurotransmitter than others. Many proteins at synapses of mammals resemble those at fruit fly synapses. This means that similar factors may also explain differences in synaptic strength in the mammalian brain. Changes in the strength of synapses underlie the ability to learn. Furthermore, many neurological and psychiatric disorders result from disruption of synapses. Understanding the molecular basis of synapses will thus provide clues to the origins of certain brain diseases.
Collapse
Affiliation(s)
- Yulia Akbergenova
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Karen L Cunningham
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Yao V Zhang
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Shirley Weiss
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
5
|
Zhang YV, Hannan SB, Kern JV, Stanchev DT, Koç B, Jahn TR, Rasse TM. The KIF1A homolog Unc-104 is important for spontaneous release, postsynaptic density maturation and perisynaptic scaffold organization. Sci Rep 2017; 7:38172. [PMID: 28344334 PMCID: PMC5366810 DOI: 10.1038/srep38172] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
The kinesin-3 family member KIF1A has been shown to be important for experience dependent neuroplasticity. In Drosophila, amorphic mutations in the KIF1A homolog unc-104 disrupt the formation of mature boutons. Disease associated KIF1A mutations have been associated with motor and sensory dysfunctions as well as non-syndromic intellectual disability in humans. A hypomorphic mutation in the forkhead-associated domain of Unc-104, unc-104bris, impairs active zone maturation resulting in an increased fraction of post-synaptic glutamate receptor fields that lack the active zone scaffolding protein Bruchpilot. Here, we show that the unc-104brismutation causes defects in synaptic transmission as manifested by reduced amplitude of both evoked and miniature excitatory junctional potentials. Structural defects observed in the postsynaptic compartment of mutant NMJs include reduced glutamate receptor field size, and altered glutamate receptor composition. In addition, we observed marked loss of postsynaptic scaffolding proteins and reduced complexity of the sub-synaptic reticulum, which could be rescued by pre- but not postsynaptic expression of unc-104. Our results highlight the importance of kinesin-3 based axonal transport in synaptic transmission and provide novel insights into the role of Unc-104 in synapse maturation.
Collapse
Affiliation(s)
- Yao V Zhang
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany.,The Picower Institute for Learning and Memory, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shabab B Hannan
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany.,Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany.,CHS Research Group Proteostasis in Neurodegenerative Disease at CellNetworks Heidelberg University and DKFZ Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Jeannine V Kern
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany
| | - Doychin T Stanchev
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany
| | - Baran Koç
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Thomas R Jahn
- CHS Research Group Proteostasis in Neurodegenerative Disease at CellNetworks Heidelberg University and DKFZ Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Tobias M Rasse
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Str. 27, 72076 Tübingen 72076, Germany.,CHS Research Group Proteostasis in Neurodegenerative Disease at CellNetworks Heidelberg University and DKFZ Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Sorvina A, Brooks DA, Ng YS, Bader CA, Weigert R, Shandala T. Bacterial challenge initiates endosome-lysosome response inDrosophilaimmune tissues. INTRAVITAL 2014. [DOI: 10.4161/intv.23889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Iacobucci GJ, Rahman NA, Valtueña AA, Nayak TK, Gunawardena S. Spatial and temporal characteristics of normal and perturbed vesicle transport. PLoS One 2014; 9:e97237. [PMID: 24878565 PMCID: PMC4039462 DOI: 10.1371/journal.pone.0097237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 04/16/2014] [Indexed: 11/19/2022] Open
Abstract
Efficient intracellular transport is essential for healthy cellular function and structural integrity, and problems in this pathway can lead to neuronal cell death and disease. To spatially and temporally evaluate how transport defects are initiated, we adapted a primary neuronal culture system from Drosophila larval brains to visualize the movement dynamics of several cargos/organelles along a 90 micron axonal neurite over time. All six vesicles/organelles imaged showed robust bi-directional motility at both day 1 and day 2. Reduction of motor proteins decreased the movement of vesicles/organelles with increased numbers of neurite blocks. Neuronal growth was also perturbed with reduction of motor proteins. Strikingly, we found that all blockages were not fixed, permanent blocks that impeded transport of vesicles as previously thought, but that some blocks were dynamic clusters of vesicles that resolved over time. Taken together, our findings suggest that non-resolving blocks may likely initiate deleterious pathways leading to death and degeneration, while resolving blocks may be benign. Therefore evaluating the spatial and temporal characteristics of vesicle transport has important implications for our understanding of how transport defects can affect other pathways to initiate death and degeneration.
Collapse
Affiliation(s)
- Gary J. Iacobucci
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Noura Abdel Rahman
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Aida Andrades Valtueña
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Tapan Kumar Nayak
- Department of Physiology and Biophysics, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Olofsson J, Axelrod JD. Methods for studying planar cell polarity. Methods 2014; 68:97-104. [PMID: 24680701 DOI: 10.1016/j.ymeth.2014.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/03/2023] Open
Abstract
Planar cell polarity (PCP) is the polarity of epithelial cells in the plane orthogonal to the apical-basal axis, and is controlled by a partially defined signaling system. PCP related signaling also plays roles in cell migration, tissue re-organization and stem cell differentiation during embryonic development, and later, in regeneration and repair. Aberrant signaling has been linked to a broad range of pathophysiologies including cancer, developmental defects, and neurological disorders. The deepest mechanistic insights have come from studies of PCP in Drosophila. In this chapter we review tools and methods to study PCP signaling in Drosophila epithelia, where it was found to involve asymmetric protein localization that is coordinated between adjacent cells. Such signaling has been most extensively studied in wing, eye, and abdomen, but also in other tissues such as leg and notum. In the adult fly, PCP is manifested in the coordinated direction of hairs and bristles, as well as the organization of ommatidia in the eye. The polarity of these structures is preceded by asymmetric localization of PCP signaling proteins at the apical junctions of epithelial cells. Based on genetic and molecular criteria, the proteins that govern PCP can be divided into distinct modules, including the core module, the Fat/Dachsous/Four-jointed (Fat/Ds/Fj) module (often referred to as the 'global' module) as well as tissue specific effector modules. Different tissues and tissue regions differ in their sensitivity to disturbances in the various modules of the PCP signaling system, leading to controversies about the interactions among the modules, and emphasizing the value of studying PCP in multiple contexts. Here, we review methods including those generally applicable, as well as some that are selectively useful for analyses of PCP in eye (including eye discs), wing (including wing discs), pupal and adult abdomen, and the cuticle of larvae and embryos.
Collapse
Affiliation(s)
- Jessica Olofsson
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, L235, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Abstract
Kinesin-based transport is important for synaptogenesis, neuroplasticity, and maintaining synaptic function. In an anatomical screen of neurodevelopmental mutants, we identified the exchange of a conserved residue (R561H) in the forkhead-associated domain of the kinesin-3 family member Unc-104/KIF1A as the genetic cause for defects in synaptic terminal- and dendrite morphogenesis. Previous structure-based analysis suggested that the corresponding residue in KIF1A might be involved in stabilizing the activated state of kinesin-3 dimers. Herein we provide the first in vivo evidence for the functional importance of R561. The R561H allele (unc-104bris) is not embryonic lethal, which allowed us to investigate consequences of disturbed Unc-104 function on postembryonic synapse development and larval behavior. We demonstrate that Unc-104 regulates the reliable apposition of active zones and postsynaptic densities, possibly by controlling site-specific delivery of its cargo. Next, we identified a role for Unc-104 in restraining neuromuscular junction growth and coordinating dendrite branch morphogenesis, suggesting that Unc-104 is also involved in dendritic transport. Mutations in KIF1A/unc-104 have been associated with hereditary spastic paraplegia and hereditary sensory and autonomic neuropathy type 2. However, we did not observe synapse retraction or dystonic posterior paralysis. Overall, our study demonstrates the specificity of defects caused by selective impairments of distinct molecular motors and highlights the critical importance of Unc-104 for the maturation of neuronal structures during embryonic development, larval synaptic terminal outgrowth, and dendrite morphogenesis.
Collapse
|
10
|
Füger P, Sreekumar V, Schüle R, Kern JV, Stanchev DT, Schneider CD, Karle KN, Daub KJ, Siegert VK, Flötenmeyer M, Schwarz H, Schöls L, Rasse TM. Spastic paraplegia mutation N256S in the neuronal microtubule motor KIF5A disrupts axonal transport in a Drosophila HSP model. PLoS Genet 2012; 8:e1003066. [PMID: 23209432 PMCID: PMC3510046 DOI: 10.1371/journal.pgen.1003066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/20/2012] [Indexed: 01/21/2023] Open
Abstract
Hereditary spastic paraplegias (HSPs) comprise a group of genetically heterogeneous neurodegenerative disorders characterized by spastic weakness of the lower extremities. We have generated a Drosophila model for HSP type 10 (SPG10), caused by mutations in KIF5A. KIF5A encodes the heavy chain of kinesin-1, a neuronal microtubule motor. Our results imply that SPG10 is not caused by haploinsufficiency but by the loss of endogenous kinesin-1 function due to a selective dominant-negative action of mutant KIF5A on kinesin-1 complexes. We have not found any evidence for an additional, more generalized toxicity of mutant Kinesin heavy chain (Khc) or the affected kinesin-1 complexes. Ectopic expression of Drosophila Khc carrying a human SPG10-associated mutation (N256S) is sufficient to disturb axonal transport and to induce motoneuron disease in Drosophila. Neurofilaments, which have been recently implicated in SPG10 disease manifestation, are absent in arthropods. Impairments in the transport of kinesin-1 cargos different from neurofilaments are thus sufficient to cause HSP–like pathological changes such as axonal swellings, altered structure and function of synapses, behavioral deficits, and increased mortality. Hereditary spastic paraplegias (HSPs) comprise a group of inherited neurological diseases. The main feature of HSP is progressive stiffness of the lower limbs due to a dysfunction of nerve cells. We study HSP type 10, which is caused by mutations in the neuronal motor protein KIF5A. HSP type 10 is inherited in an autosomal-dominant manner, which means that patients have a normal and a mutated copy of the KIF5A gene. KIF5A plays an important role in neuronal function: it transports cargos to the synapse that can be up to 1 m from the cell body. We use the fruit fly as a model to investigate the role of mutations in KIF5A. Our fly model replicates a central feature of HSP: muscles that are activated by nerve cells that have long cellular processes are more severely impaired. We now address why one mutated copy of KIF5A is sufficient to cause HSP. To date, it has been thought that patients might have HSP because they have insufficient functional KIF5A or because mutated KIF5A disturbs the function of normal KIF5A. We provide evidence for the latter possibility.
Collapse
Affiliation(s)
- Petra Füger
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Vrinda Sreekumar
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Rebecca Schüle
- Hertie-Institute for Clinical Brain Research and Center for Neurology, Department of Neurodegenerative Disease, University of Tübingen, Tübingen, Germany
| | - Jeannine V. Kern
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Doychin T. Stanchev
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Carola D. Schneider
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Kathrin N. Karle
- Hertie-Institute for Clinical Brain Research and Center for Neurology, Department of Neurodegenerative Disease, University of Tübingen, Tübingen, Germany
| | - Katharina J. Daub
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Vera K. Siegert
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Hertie-Institute for Clinical Brain Research and Center for Neurology, Department of Neurodegenerative Disease, University of Tübingen, Tübingen, Germany
| | | | - Heinz Schwarz
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie-Institute for Clinical Brain Research and Center for Neurology, Department of Neurodegenerative Disease, University of Tübingen, Tübingen, Germany
| | - Tobias M. Rasse
- Junior Research Group Synaptic Plasticity, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- * E-mail:
| |
Collapse
|
11
|
Molecular and genetic analysis of the Drosophila model of fragile X syndrome. Results Probl Cell Differ 2012; 54:119-56. [PMID: 22009350 DOI: 10.1007/978-3-642-21649-7_7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila genome contains most genes known to be involved in heritable disease. The extraordinary genetic malleability of Drosophila, coupled to sophisticated imaging, electrophysiology, and behavioral paradigms, has paved the way for insightful mechanistic studies on the causes of developmental and neurological disease as well as many possible interventions. Here, we focus on one of the most advanced examples of Drosophila genetic disease modeling, the Drosophila model of Fragile X Syndrome, which for the past decade has provided key advances into the molecular, cellular, and behavioral defects underlying this devastating disorder. We discuss the multitude of RNAs and proteins that interact with the disease-causing FMR1 gene product, whose function is conserved from Drosophila to human. In turn, we consider FMR1 mechanistic relationships in non-neuronal tissues (germ cells and embryos), peripheral motor and sensory circuits, and central brain circuits involved in circadian clock activity and learning/memory.
Collapse
|