1
|
Caven LT, Brinkworth AJ, Carabeo RA. Chlamydia trachomatis induces the transcriptional activity of host YAP in a Hippo-independent fashion. Front Cell Infect Microbiol 2023; 13:1098420. [PMID: 36923592 PMCID: PMC10008951 DOI: 10.3389/fcimb.2023.1098420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
Introduction The obligate intracellular pathogen Chlamydia trachomatis is the causative agent of the most common bacterial sexually transmitted disease worldwide. While the host response to infection by this pathogen has been well characterized, it remains unclear to what extent host gene expression during infection is the product of Chlamydia-directed modulation of host transcription factors. Methods To identify transcription factors potentially modulated by Chlamydia during infection, we infected immortalized endocervical epithelial cells (End1/E6E7) with the anogenital C. trachomatis serovar L2, harvesting polyadenylated RNA for bulk RNA-sequencing. Subsequent experiments elucidating the mechanism of infection-mediated YAP activation assayed YAP target gene expression via qRT-PCR, YAP nuclear translocation via quantitative immunofluorescence, and YAP phosphorylation via Western blotting. Results RNA sequencing of Chlamydia-infected endocervical epithelial cells revealed gene expression consistent with activity of YAP, a transcriptional coactivator implicated in cell proliferation, wound healing, and fibrosis. After confirming induction of YAP target genes during infection, we observed an infection-dependent increase in YAP nuclear translocation sensitive to inhibition of bacterial protein synthesis. While Hippo-mediated phosphoinhibition of YAP at S127 was unaffected by C. trachomatis infection, Hippo-independent phosphorylation at Y357 was increased. Infection did not enhance nuclear translocation of Y357F mutant YAP, illustrating a requirement for phosphorylation at this residue. Pharmacological inhibition of host Src-family kinase activity attenuated YAP Y357 phosphorylation, but not nuclear translocation - which was instead sensitive to inhibition of Abl. Discussion Our results define a transcriptome-altering mechanism of pathogen-directed YAP activation that bypasses canonical inhibition by the Hippo kinase cascade, with a potential link to chlamydial fibrosis and other advanced disease sequelae. Additional study is required to determine the specific role of infection-associated Y357 phosphorylation and Abl activity in chlamydial induction of YAP.
Collapse
Affiliation(s)
- Liam T. Caven
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, United States
| | - Amanda J. Brinkworth
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rey A. Carabeo
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
2
|
Wafer-Scale Patterning of Protein Templates for Hydrogel Fabrication. MICROMACHINES 2021; 12:mi12111386. [PMID: 34832798 PMCID: PMC8620583 DOI: 10.3390/mi12111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes are a potentially unlimited cell source and promising patient-specific in vitro model of cardiac diseases. Yet, these cells are limited by immaturity and population heterogeneity. Current in vitro studies aiming at better understanding of the mechanical and chemical cues in the microenvironment that drive cellular maturation involve deformable materials and precise manipulation of the microenvironment with, for example, micropatterns. Such microenvironment manipulation most often involves microfabrication protocols which are time-consuming, require cleanroom facilities and photolithography expertise. Here, we present a method to increase the scale of the fabrication pipeline, thereby enabling large-batch generation of shelf-stable microenvironment protein templates on glass chips. This decreases fabrication time and allows for more flexibility in the subsequent steps, for example, in tuning the material properties and the selection of extracellular matrix or cell proteins. Further, the fabrication of deformable hydrogels has been optimized for compatibility with these templates, in addition to the templates being able to be used to acquire protein patterns directly on the glass chips. With our approach, we have successfully controlled the shapes of cardiomyocytes seeded on Matrigel-patterned hydrogels.
Collapse
|
3
|
Guadagno NA, Margiotta A, Bjørnestad SA, Haugen LH, Kjos I, Xu X, Hu X, Bakke O, Margadant F, Progida C. Rab18 regulates focal adhesion dynamics by interacting with kinectin-1 at the endoplasmic reticulum. J Cell Biol 2020; 219:151855. [PMID: 32525992 PMCID: PMC7337506 DOI: 10.1083/jcb.201809020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/17/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
The members of the Rab family of small GTPases are molecular switches that regulate distinct steps in different membrane traffic pathways. In addition to this canonical function, Rabs can play a role in other processes, such as cell adhesion and motility. Here, we reveal the role of the small GTPase Rab18 as a positive regulator of directional migration in chemotaxis, and the underlying mechanism. We show that knockdown of Rab18 reduces the size of focal adhesions (FAs) and influences their dynamics. Furthermore, we found that Rab18, by directly interacting with the endoplasmic reticulum (ER)-resident protein kinectin-1, controls the anterograde kinesin-1–dependent transport of the ER required for the maturation of nascent FAs and protrusion orientation toward a chemoattractant. Altogether, our data support a model in which Rab18 regulates kinectin-1 transport toward the cell surface to form ER–FA contacts, thus promoting FA growth and cell migration during chemotaxis.
Collapse
Affiliation(s)
| | | | | | | | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Xiaochun Xu
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Xian Hu
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Felix Margadant
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Vestre K, Kjos I, Guadagno NA, Borg Distefano M, Kohler F, Fenaroli F, Bakke O, Progida C. Rab6 regulates cell migration and invasion by recruiting Cdc42 and modulating its activity. Cell Mol Life Sci 2019; 76:2593-2614. [PMID: 30830239 PMCID: PMC11105640 DOI: 10.1007/s00018-019-03057-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/08/2019] [Accepted: 02/26/2019] [Indexed: 12/22/2022]
Abstract
Rab proteins are master regulators of intracellular membrane trafficking, but they also contribute to cell division, signaling, polarization, and migration. The majority of the works describing the mechanisms used by Rab proteins to regulate cell motility involve intracellular transport of key molecules important for migration. Interestingly, a few studies indicate that Rabs can modulate the activity of Rho GTPases, important regulators for the cytoskeleton rearrangements, but the mechanisms behind this crosstalk are still poorly understood. In this work, we identify Rab6 as a negative regulator of cell migration in vitro and in vivo. We show that the loss of Rab6 promotes formation of actin protrusions and influences actomyosin dynamics by upregulating Cdc42 activity and downregulating myosin II phosphorylation. We further provide the molecular mechanism behind this regulation demonstrating that Rab6 interacts with both Cdc42 and Trio, a GEF for Cdc42. In sum, our results uncover a mechanism used by Rab proteins to ensure spatial regulation of Rho GTPase activity for coordination of cytoskeleton rearrangements required in migrating cells.
Collapse
Affiliation(s)
- Katharina Vestre
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Noemi Antonella Guadagno
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Marita Borg Distefano
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Felix Kohler
- Department of Physics, The NJORD Centre, University of Oslo, Oslo, Norway
| | | | - Oddmund Bakke
- Department of Biosciences, University of Oslo, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Oslo, Norway.
- Centre for Immune Regulation, University of Oslo, Oslo, Norway.
| |
Collapse
|
5
|
Nguyen HTL, Nguyen ST, Van Pham P. Concise Review: 3D cell culture systems for anticancer drug screening. BIOMEDICAL RESEARCH AND THERAPY 2016. [DOI: 10.7603/s40730-016-0022-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Li Y, Rose F, di Pietro F, Morin X, Genovesio A. Detection and tracking of overlapping cell nuclei for large scale mitosis analyses. BMC Bioinformatics 2016; 17:183. [PMID: 27112769 PMCID: PMC4845473 DOI: 10.1186/s12859-016-1030-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/09/2016] [Indexed: 11/26/2022] Open
Abstract
Background Cell culture on printed micropatterns slides combined with automated fluorescent microscopy allows for extraction of tens of thousands of videos of small isolated growing cell clusters. The analysis of such large dataset in space and time is of great interest to the community in order to identify factors involved in cell growth, cell division or tissue formation by testing multiples conditions. However, cells growing on a micropattern tend to be tightly packed and to overlap with each other. Consequently, image analysis of those large dynamic datasets with no possible human intervention has proven impossible using state of the art automated cell detection methods. Results Here, we propose a fully automated image analysis approach to estimate the number, the location and the shape of each cell nucleus, in clusters at high throughput. The method is based on a robust fit of Gaussian mixture models with two and three components on each frame followed by an analysis over time of the fitting residual and two other relevant features. We use it to identify with high precision the very first frame containing three cells. This allows in our case to measure a cell division angle on each video and to construct division angle distributions for each tested condition. We demonstrate the accuracy of our method by validating it against manual annotation on about 4000 videos of cell clusters. Conclusions The proposed approach enables the high throughput analysis of video sequences of isolated cell clusters obtained using micropatterns. It relies only on two parameters that can be set robustly as they reduce to the average cell size and intensity.
Collapse
Affiliation(s)
- Yingbo Li
- Scientific Center for Computational Biology, Institut de Biologie de l'Ecole Normale Superieure, CNRS-INSERM-ENS, PSL Research University, 46, rue d'Ulm, Paris, 75005, France.,Division cellulaire et neurogenèse, Institut de Biologie de l'Ecole Normale Superieure, PSL Research University, 46, rue d'Ulm, Paris, 75005, France
| | - France Rose
- Scientific Center for Computational Biology, Institut de Biologie de l'Ecole Normale Superieure, CNRS-INSERM-ENS, PSL Research University, 46, rue d'Ulm, Paris, 75005, France
| | - Florencia di Pietro
- Division cellulaire et neurogenèse, Institut de Biologie de l'Ecole Normale Superieure, PSL Research University, 46, rue d'Ulm, Paris, 75005, France
| | - Xavier Morin
- Division cellulaire et neurogenèse, Institut de Biologie de l'Ecole Normale Superieure, PSL Research University, 46, rue d'Ulm, Paris, 75005, France
| | - Auguste Genovesio
- Scientific Center for Computational Biology, Institut de Biologie de l'Ecole Normale Superieure, CNRS-INSERM-ENS, PSL Research University, 46, rue d'Ulm, Paris, 75005, France.
| |
Collapse
|
7
|
Bennett NK, Dhaliwal A, Moghe PV. Convergence of Highly Resolved and Rapid Screening Platforms with Dynamically Engineered, Cell Phenotype-Prescriptive Biomaterials. ACTA ACUST UNITED AC 2016; 2:142-151. [PMID: 27482508 DOI: 10.1007/s40495-016-0057-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Biophysical and biochemical cues from the cellular microenvironment initiate intracellular signaling through cellular membrane receptors and trigger specific cell developmental programs. Extracellular substrates and matrix scaffolds engineered to mimic cell's native physiological environment must incorporate the multifactorial parameters (composition, micro and nanoscale organization and topography) of the extracellular matrix as well as the dynamic nature of the matrix. The design of such engineered biomaterials is challenged by the inherent complexity and dynamic nature of the cell-extracellular matrix reciprocity, while the validation of robust microenvironments requires a deeper, higher content phenotypic resolution of cell-matrix interactions alongside a rapid screening capability. To this end, high-throughput platforms are integral to facilitating the screening and optimization of complex engineered microenvironments for directing desired cell developmental pathway. This review highlights the recent advances in biomaterial platforms that present dynamic cues and enable high throughput screening of cell's response to a combination of micro-environmental factors. We also address some newer techniques involving high content image informatics to elucidate emergent cellular behaviors with a focus on stem cell regenerative endpoints.
Collapse
Affiliation(s)
- Neal K Bennett
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Anandika Dhaliwal
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ; Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ
| |
Collapse
|
8
|
Yamamoto H, Demura T, Sekine K, Kono S, Niwano M, Hirano-Iwata A, Tanii T. Photopatterning Proteins and Cells in Aqueous Environment Using TiO2 Photocatalysis. J Vis Exp 2015:e53045. [PMID: 26554338 PMCID: PMC4692672 DOI: 10.3791/53045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Organic contaminants adsorbed on the surface of titanium dioxide (TiO2) can be decomposed by photocatalysis under ultraviolet (UV) light. Here we describe a novel protocol employing the TiO2 photocatalysis to locally alter cell affinity of the substrate surface. For this experiment, a thin TiO2 film was sputter-coated on a glass coverslip, and the TiO2 surface was subsequently modified with an organosilane monolayer derived from octadecyltrichlorosilane (OTS), which inhibits cell adhesion. The sample was immersed in a cell culture medium, and focused UV light was irradiated to an octagonal region. When a neuronal cell line PC12 cells were plated on the sample, cells adhered only on the UV-irradiated area. We further show that this surface modification can also be performed in situ, i.e., even when cells are growing on the substrate. Proper modification of the surface required an extracellular matrix protein collagen to be present in the medium at the time of UV irradiation. The technique presented here can potentially be employed in patterning multiple cell types for constructing coculture systems or to arbitrarily manipulate cells under culture.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University; CREST, Japan Science and Technology Agency;
| | - Takanori Demura
- School of Fundamental Science and Engineering, Waseda University
| | - Kohei Sekine
- School of Fundamental Science and Engineering, Waseda University
| | - Sho Kono
- School of Fundamental Science and Engineering, Waseda University
| | - Michio Niwano
- CREST, Japan Science and Technology Agency; Research Institute of Electrical Communication, Tohoku University
| | - Ayumi Hirano-Iwata
- CREST, Japan Science and Technology Agency; Graduate School of Biomedical Engineering, Tohoku University
| | - Takashi Tanii
- Faculty of Science and Engineering, Waseda University
| |
Collapse
|
9
|
|
10
|
Higaki T, Kutsuna N, Hosokawa Y, Akita K, Ebine K, Ueda T, Kondo N, Hasezawa S. Statistical organelle dissection of Arabidopsis guard cells using image database LIPS. Sci Rep 2012; 2:405. [PMID: 22582142 PMCID: PMC3349934 DOI: 10.1038/srep00405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/30/2012] [Indexed: 12/27/2022] Open
Abstract
To comprehensively grasp cell biological events in plant stomatal movement, we have captured microscopic images of guard cells with various organelles markers. The 28,530 serial optical sections of 930 pairs of Arabidopsis guard cells have been released as a new image database, named Live Images of Plant Stomata (LIPS). We visualized the average organellar distributions in guard cells using probabilistic mapping and image clustering techniques. The results indicated that actin microfilaments and endoplasmic reticulum (ER) are mainly localized to the dorsal side and connection regions of guard cells. Subtractive images of open and closed stomata showed distribution changes in intracellular structures, including the ER, during stomatal movement. Time-lapse imaging showed that similar ER distribution changes occurred during stomatal opening induced by light irradiation or femtosecond laser shots on neighboring epidermal cells, indicating that our image analysis approach has identified a novel ER relocation in stomatal opening.
Collapse
Affiliation(s)
- Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | | | | | | | |
Collapse
|