1
|
Zschüntzsch J, Meyer S, Shahriyari M, Kummer K, Schmidt M, Kummer S, Tiburcy M. The Evolution of Complex Muscle Cell In Vitro Models to Study Pathomechanisms and Drug Development of Neuromuscular Disease. Cells 2022; 11:1233. [PMID: 35406795 PMCID: PMC8997482 DOI: 10.3390/cells11071233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Many neuromuscular disease entities possess a significant disease burden and therapeutic options remain limited. Innovative human preclinical models may help to uncover relevant disease mechanisms and enhance the translation of therapeutic findings to strengthen neuromuscular disease precision medicine. By concentrating on idiopathic inflammatory muscle disorders, we summarize the recent evolution of the novel in vitro models to study disease mechanisms and therapeutic strategies. A particular focus is laid on the integration and simulation of multicellular interactions of muscle tissue in disease phenotypes in vitro. Finally, the requirements of a neuromuscular disease drug development workflow are discussed with a particular emphasis on cell sources, co-culture systems (including organoids), functionality, and throughput.
Collapse
Affiliation(s)
- Jana Zschüntzsch
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Stefanie Meyer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Mina Shahriyari
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Karsten Kummer
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
| | - Matthias Schmidt
- Department of Neurology, University Medical Center Goettingen, 37075 Goettingen, Germany; (S.M.); (K.K.); (M.S.)
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| | - Susann Kummer
- Risk Group 4 Pathogens–Stability and Persistence, Biosafety Level-4 Laboratory, Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, 37075 Goettingen, Germany;
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Goettingen, Germany
| |
Collapse
|
2
|
Saini J, Faroni A, Reid AJ, Mamchaoui K, Mouly V, Butler-Browne G, Lightfoot AP, McPhee JS, Degens H, Al-Shanti N. A Novel Bioengineered Functional Motor Unit Platform to Study Neuromuscular Interaction. J Clin Med 2020; 9:jcm9103238. [PMID: 33050427 PMCID: PMC7599749 DOI: 10.3390/jcm9103238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Background: In many neurodegenerative and muscular disorders, and loss of innervation in sarcopenia, improper reinnervation of muscle and dysfunction of the motor unit (MU) are key pathogenic features. In vivo studies of MUs are constrained due to difficulties isolating and extracting functional MUs, so there is a need for a simplified and reproducible system of engineered in vitro MUs. Objective: to develop and characterise a functional MU model in vitro, permitting the analysis of MU development and function. Methods: an immortalised human myoblast cell line was co-cultured with rat embryo spinal cord explants in a serum-free/growth fact media. MUs developed and the morphology of their components (neuromuscular junction (NMJ), myotubes and motor neurons) were characterised using immunocytochemistry, phase contrast and confocal microscopy. The function of the MU was evaluated through live observations and videography of spontaneous myotube contractions after challenge with cholinergic antagonists and glutamatergic agonists. Results: blocking acetylcholine receptors with α-bungarotoxin resulted in complete, cessation of myotube contractions, which was reversible with tubocurarine. Furthermore, myotube activity was significantly higher with the application of L-glutamic acid. All these observations indicate the formed MU are functional. Conclusion: a functional nerve-muscle co-culture model was established that has potential for drug screening and pathophysiological studies of neuromuscular interactions.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Alessandro Faroni
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Adam J. Reid
- Manchester Academic Health Science Centre, Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, School of Biological Sciences, University of Manchester, Manchester M1 7DN, UK; (A.F.); (A.J.R.)
- Manchester Academic Health Science Centre, Department of Plastic Surgery & Burns, Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Gillian Butler-Browne
- Center for Research in Myology, Sorbonne Université-INSERM, 75013 Paris, France; (K.M.); (V.M.); (G.B.-B.)
| | - Adam P. Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
| | - Jamie S. McPhee
- Department of Sport and Exercise Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK;
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Institute of Sport Science and Innovations, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, Department of Life Sciences, Manchester Metropolitan University, Manchester M1 5GD, UK; (J.S.); (A.P.L.); (H.D.)
- Correspondence:
| |
Collapse
|
3
|
Das S, Gordián-Vélez WJ, Ledebur HC, Mourkioti F, Rompolas P, Chen HI, Serruya MD, Cullen DK. Innervation: the missing link for biofabricated tissues and organs. NPJ Regen Med 2020; 5:11. [PMID: 32550009 PMCID: PMC7275031 DOI: 10.1038/s41536-020-0096-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Innervation plays a pivotal role as a driver of tissue and organ development as well as a means for their functional control and modulation. Therefore, innervation should be carefully considered throughout the process of biofabrication of engineered tissues and organs. Unfortunately, innervation has generally been overlooked in most non-neural tissue engineering applications, in part due to the intrinsic complexity of building organs containing heterogeneous native cell types and structures. To achieve proper innervation of engineered tissues and organs, specific host axon populations typically need to be precisely driven to appropriate location(s) within the construct, often over long distances. As such, neural tissue engineering and/or axon guidance strategies should be a necessary adjunct to most organogenesis endeavors across multiple tissue and organ systems. To address this challenge, our team is actively building axon-based "living scaffolds" that may physically wire in during organ development in bioreactors and/or serve as a substrate to effectively drive targeted long-distance growth and integration of host axons after implantation. This article reviews the neuroanatomy and the role of innervation in the functional regulation of cardiac, skeletal, and smooth muscle tissue and highlights potential strategies to promote innervation of biofabricated engineered muscles, as well as the use of "living scaffolds" in this endeavor for both in vitro and in vivo applications. We assert that innervation should be included as a necessary component for tissue and organ biofabrication, and that strategies to orchestrate host axonal integration are advantageous to ensure proper function, tolerance, assimilation, and bio-regulation with the recipient post-implant.
Collapse
Affiliation(s)
- Suradip Das
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Wisberty J. Gordián-Vélez
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
| | | | - Foteini Mourkioti
- Department of Orthopedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Panteleimon Rompolas
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - H. Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
| | - Mijail D. Serruya
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA USA
| | - D. Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA USA
- Axonova Medical, LLC., Philadelphia, PA USA
| |
Collapse
|
4
|
Abdelmoez AM, Sardón Puig L, Smith JAB, Gabriel BM, Savikj M, Dollet L, Chibalin AV, Krook A, Zierath JR, Pillon NJ. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am J Physiol Cell Physiol 2019; 318:C615-C626. [PMID: 31825657 PMCID: PMC7099524 DOI: 10.1152/ajpcell.00540.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rat L6, mouse C2C12, and primary human skeletal muscle cells (HSMCs) are commonly used to study biological processes in skeletal muscle, and experimental data on these models are abundant. However, consistently matched experimental data are scarce, and comparisons between the different cell types and adult tissue are problematic. We hypothesized that metabolic differences between these cellular models may be reflected at the mRNA level. Publicly available data sets were used to profile mRNA levels in myotubes and skeletal muscle tissues. L6, C2C12, and HSMC myotubes were assessed for proliferation, glucose uptake, glycogen synthesis, mitochondrial activity, and substrate oxidation, as well as the response to in vitro contraction. Transcriptomic profiling revealed that mRNA of genes coding for actin and myosin was enriched in C2C12, whereas L6 myotubes had the highest levels of genes encoding glucose transporters and the five complexes of the mitochondrial electron transport chain. Consistently, insulin-stimulated glucose uptake and oxidative capacity were greatest in L6 myotubes. Insulin-induced glycogen synthesis was highest in HSMCs, but C2C12 myotubes had higher baseline glucose oxidation. All models responded to electrical pulse stimulation-induced glucose uptake and gene expression but in a slightly different manner. Our analysis reveals a great degree of heterogeneity in the transcriptomic and metabolic profiles of L6, C2C12, or primary human myotubes. Based on these distinct signatures, we provide recommendations for the appropriate use of these models depending on scientific hypotheses and biological relevance.
Collapse
Affiliation(s)
- Ahmed M Abdelmoez
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sardón Puig
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brendan M Gabriel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lucile Dollet
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Singh T, Vazquez M. Time-Dependent Addition of Neuronal and Schwann Cells Increase Myotube Viability and Length in an In Vitro Tri-culture Model of the Neuromuscular Junction. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00095-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Saini J, Faroni A, Abd Al Samid M, Reid AJ, Lightfoot AP, Mamchaoui K, Mouly V, Butler-Browne G, McPhee JS, Degens H, Al-Shanti N. Simplified in vitro engineering of neuromuscular junctions between rat embryonic motoneurons and immortalized human skeletal muscle cells. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2019; 12:1-9. [PMID: 30863121 PMCID: PMC6388735 DOI: 10.2147/sccaa.s187655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background Neuromuscular junctions (NMJs) consist of the presynaptic cholinergic motoneuron terminals and the corresponding postsynaptic motor endplates on skeletal muscle fibers. At the NMJ the action potential of the neuron leads, via release of acetylcholine, to muscle membrane depolarization that in turn is translated into muscle contraction and physical movement. Despite the fact that substantial NMJ research has been performed, the potential of in vivo NMJ investigations is inadequate and difficult to employ. A simple and reproducible in vitro NMJ model may provide a robust means to study the impact of neurotrophic factors, growth factors, and hormones on NMJ formation, structure, and function. Methods This report characterizes a novel in vitro NMJ model utilizing immortalized human skeletal muscle stem cells seeded on 35 mm glass-bottom dishes, cocultured and innervated with spinal cord explants from rat embryos at ED 13.5. The cocultures were fixed and stained on day 14 for analysis and assessment of NMJ formation and development. Results This unique serum- and trophic factor-free system permits the growth of cholinergic motoneurons, the formation of mature NMJs, and the development of highly differentiated contractile myotubes, which exhibit appropriate configuration of transversal triads, representative of in vivo conditions. Conclusion This coculture system provides a tool to study vital features of NMJ formation, regulation, maintenance, and repair, as well as a model platform to explore neuromuscular diseases and disorders affecting NMJs.
Collapse
Affiliation(s)
- Jasdeep Saini
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, University Hospitals of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Marwah Abd Al Samid
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.,Department of Plastic Surgery & Burns, University Hospitals of South Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam P Lightfoot
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université- INSERM, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université- INSERM, Paris, France
| | | | - Jamie S McPhee
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - Hans Degens
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK, .,Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania.,University of Medicine and Pharmacy of Targu Mures, Targu Mures, Romania
| | - Nasser Al-Shanti
- Musculoskeletal Science & Sports Medicine Research Centre, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| |
Collapse
|
7
|
Abd Al Samid M, McPhee JS, Saini J, McKay TR, Fitzpatrick LM, Mamchaoui K, Bigot A, Mouly V, Butler-Browne G, Al-Shanti N. A functional human motor unit platform engineered from human embryonic stem cells and immortalized skeletal myoblasts. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2018; 11:85-93. [PMID: 30519053 PMCID: PMC6233953 DOI: 10.2147/sccaa.s178562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background Although considerable research on neuromuscular junctions (NMJs) has been conducted, the prospect of in vivo NMJ studies is limited and these studies are challenging to implement. Therefore, there is a clear unmet need to develop a feasible, robust, and physiologically relevant in vitro NMJ model. Objective We aimed to establish a novel functional human NMJs platform, which is serum and neural complex media/neural growth factor-free, using human immortalized myoblasts and human embryonic stem cells (hESCs)-derived neural progenitor cells (NPCs) that can be used to understand the mechanisms of NMJ development and degeneration. Methods Immortalized human myoblasts were co-cultured with hESCs derived committed NPCs. Over the course of the 7 days myoblasts differentiated into myotubes and NPCs differentiated into motor neurons. Results Neuronal axon sprouting branched to form multiple NMJ innervation sites along the myotubes and the myotubes showed extensive, spontaneous contractile activity. Choline acetyltransferase and βIII-tubulin immunostaining confirmed that the NPCs had matured into cholinergic motor neurons. Postsynaptic site of NMJs was further characterized by staining dihydropyridine receptors, ryanodine receptors, and acetylcholine receptors by α-bungarotoxin. Conclusion We established a functional human motor unit platform for in vitro investigations. Thus, this co-culture system can be used as a novel platform for 1) drug discovery in the treatment of neuromuscular disorders, 2) deciphering vital features of NMJ formation, regulation, maintenance, and repair, and 3) exploring neuromuscular diseases, age-associated degeneration of the NMJ, muscle aging, and diabetic neuropathy and myopathy.
Collapse
Affiliation(s)
- Marwah Abd Al Samid
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Jamie S McPhee
- Department of Sport and Exercise Science, Manchester Metropolitan University, Manchester, UK
| | - Jasdeep Saini
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Tristan R McKay
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Lorna M Fitzpatrick
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| | - Kamel Mamchaoui
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | - Anne Bigot
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | - Vincent Mouly
- Center for Research in Myology, Sorbonne Université-INSERM, Paris, France
| | | | - Nasser Al-Shanti
- Healthcare Science Research Institute, School of Healthcare Science, Manchester Metropolitan University, Manchester, UK,
| |
Collapse
|
8
|
Al Samid MA, Al-Shanti N, Odeh M. Motor Neuron-Skeletal Muscle Co Culture Model: A Potential Novel in Vitro and Computaional Platform to Investigate Cancer Cachexia. 2018 1ST INTERNATIONAL CONFERENCE ON CANCER CARE INFORMATICS (CCI) 2018. [DOI: 10.1109/cancercare.2018.8618261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
9
|
Mis K, Grubic Z, Lorenzon P, Sciancalepore M, Mars T, Pirkmajer S. In Vitro Innervation as an Experimental Model to Study the Expression and Functions of Acetylcholinesterase and Agrin in Human Skeletal Muscle. Molecules 2017; 22:molecules22091418. [PMID: 28846617 PMCID: PMC6151842 DOI: 10.3390/molecules22091418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022] Open
Abstract
Acetylcholinesterase (AChE) and agrin, a heparan-sulfate proteoglycan, reside in the basal lamina of the neuromuscular junction (NMJ) and play key roles in cholinergic transmission and synaptogenesis. Unlike most NMJ components, AChE and agrin are expressed in skeletal muscle and α-motor neurons. AChE and agrin are also expressed in various other types of cells, where they have important alternative functions that are not related to their classical roles in NMJ. In this review, we first focus on co-cultures of embryonic rat spinal cord explants with human skeletal muscle cells as an experimental model to study functional innervation in vitro. We describe how this heterologous rat-human model, which enables experimentation on highly developed contracting human myotubes, offers unique opportunities for AChE and agrin research. We then highlight innovative approaches that were used to address salient questions regarding expression and alternative functions of AChE and agrin in developing human skeletal muscle. Results obtained in co-cultures are compared with those obtained in other models in the context of general advances in the field of AChE and agrin neurobiology.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Zoran Grubic
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Paola Lorenzon
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Marina Sciancalepore
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Tomaz Mars
- Department of Life Sciences, University of Trieste, via A. Fleming 22, I-34127 Trieste, Italy.
| | - Sergej Pirkmajer
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Vilmont V, Cadot B, Ouanounou G, Gomes ER. A system for studying mechanisms of neuromuscular junction development and maintenance. Development 2016; 143:2464-77. [PMID: 27226316 PMCID: PMC4958317 DOI: 10.1242/dev.130278] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/12/2016] [Indexed: 12/12/2022]
Abstract
The neuromuscular junction (NMJ), a cellular synapse between a motor neuron and a skeletal muscle fiber, enables the translation of chemical cues into physical activity. The development of this special structure has been subject to numerous investigations, but its complexity renders in vivo studies particularly difficult to perform. In vitro modeling of the neuromuscular junction represents a powerful tool to delineate fully the fine tuning of events that lead to subcellular specialization at the pre-synaptic and post-synaptic sites. Here, we describe a novel heterologous co-culture in vitro method using rat spinal cord explants with dorsal root ganglia and murine primary myoblasts to study neuromuscular junctions. This system allows the formation and long-term survival of highly differentiated myofibers, motor neurons, supporting glial cells and functional neuromuscular junctions with post-synaptic specialization. Therefore, fundamental aspects of NMJ formation and maintenance can be studied using the described system, which can be adapted to model multiple NMJ-associated disorders.
Collapse
Affiliation(s)
- Valérie Vilmont
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Bruno Cadot
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Gilles Ouanounou
- FRE CNRS 3693 (U.N.I.C), Unité de Neuroscience, Information et Complexité CNRS, Bât. 33, 1 Ave de la Terasse, Gif sur Yvette 91198, France
| | - Edgar R Gomes
- Myology Research Center, UM76-INSERM U974-CNRS FRE 3617 Sorbonne Universités, UPMC Université Paris 06, Paris, France Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
11
|
Induced formation and maturation of acetylcholine receptor clusters in a defined 3D bio-artificial muscle. Mol Neurobiol 2013; 48:397-403. [PMID: 23371342 DOI: 10.1007/s12035-013-8412-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 12/28/2022]
Abstract
Dysfunction of the neuromuscular junction is involved in a wide range of muscular diseases. The development of neuromuscular junction through which skeletal muscle is innervated requires the functional modulation of acetylcholine receptor (AchR) clustering on myofibers. However, studies on AchR clustering in vitro are mostly done on monolayer muscle cell culture, which lacks a three-dimensional (3D) structure, a prominent limitation of the two-dimensional (2D) system. To enable a better understanding on the structure-function correlation underlying skeletal muscle innervation, a muscle system with a well-defined geometry mimicking the in vivo muscular setting is needed. Here, we report a 3D bio-artificial muscle (BAM) bioengineered from green fluorescent protein-transduced C3H murine myoblasts as a novel in vitro tissue-based model for muscle innervation studies. Our cell biological and molecular analysis showed that this BAM is structurally similar to in vivo muscle tissue and can reach the perinatal differentiation stage, higher than does 2D culture. Effective clustering and morphological maturation of AchRs on BAMs induced by agrin and laminin indicate the functional activity and plasticity of this BAM system toward innervation. Taken together, our results show that the BAM provides a favorable 3D environment that at least partially recapitulates real physiological skeletal muscle with regard to innervation. With a convenience of fabrication and manipulation, this 3D in vitro system offers a novel model for studying mechanisms underlying skeletal muscle innervation and testing therapeutic strategies for relevant nervous and muscular diseases.
Collapse
|
12
|
Schenk HC, Krampfl K, Baumgärtner W, Tipold A. Canine muscle cell culture and consecutive patch-clamp measurements - a new approach to characterize muscular diseases in dogs. BMC Vet Res 2012; 8:227. [PMID: 23171640 PMCID: PMC3539935 DOI: 10.1186/1746-6148-8-227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 11/18/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The recognition of functional muscular disorders, (e.g. channelopathies like Myotonia) is rising in veterinary neurology. Morphologic (e.g. histology) and even genetic based studies in these diseases are not able to elucidate the functional pathomechanism. As there is a deficit of knowledge and skills considering this special task, the aim of the current pilot study was to develop a canine muscle cell culture system derived from muscle biopsies of healthy client-owned dogs, which allows sampling of the biopsies under working conditions in the daily veterinary practise. RESULTS Muscular biopsies from 16 dogs of different age and breed were taken during standard surgical procedures and were stored for one to three days at 4°C in a transport medium in order to simulate shipping conditions. Afterwards biopsies were professionally processed, including harvesting of satellite cells, inducing their proliferation, differentiating them into myotubes and recultivating myotubes after long-term storage in liquid nitrogen. Myogenic origin of cultured cells was determined by immunofluorescence, immunohistology and by their typical morphology after inducing differentiation. Subsequent to the differentiation into myotubes feasibility of patch-clamp recordings of voltage gated ion channels was successfully. CONCLUSION We have developed a canine muscle cell culture system, which allows sampling of biopsies from young and old dogs of different breeds under practical conditions. Patch clamp measurements can be carried out with the cultured myotubes demonstrating potential of these cells as source for functional research.
Collapse
Affiliation(s)
- Henning Christian Schenk
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine, Hannover, Germany.
| | | | | | | |
Collapse
|