1
|
Brown WGA, Needham K, Begeng JM, Thompson AC, Nayagam BA, Kameneva T, Stoddart PR. Thermal damage threshold of neurons during infrared stimulation. BIOMEDICAL OPTICS EXPRESS 2020; 11:2224-2234. [PMID: 32341879 PMCID: PMC7173919 DOI: 10.1364/boe.383165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/11/2020] [Accepted: 03/23/2020] [Indexed: 05/25/2023]
Abstract
In infrared neural stimulation (INS), laser-evoked thermal transients are used to generate small depolarising currents in neurons. The laser exposure poses a moderate risk of thermal damage to the target neuron. Indeed, exogenous methods of neural stimulation often place the target neurons under stressful non-physiological conditions, which can hinder ordinary neuronal function and hasten cell death. Therefore, quantifying the exposure-dependent probability of neuronal damage is essential for identifying safe operating limits of INS and other interventions for therapeutic and prosthetic use. Using patch-clamp recordings in isolated spiral ganglion neurons, we describe a method for determining the dose-dependent damage probabilities of individual neurons in response to both acute and cumulative infrared exposure parameters based on changes in injection current. The results identify a local thermal damage threshold at approximately 60 °C, which is in keeping with previous literature and supports the claim that damage during INS is a purely thermal phenomenon. In principle this method can be applied to any potentially injurious stimuli, allowing for the calculation of a wide range of dose-dependent neural damage probabilities. Unlike histological analyses, the technique is well-suited to quantifying gradual neuronal damage, and critical threshold behaviour is not required.
Collapse
Affiliation(s)
- William G. A. Brown
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Karina Needham
- Department of Surgery (Otolaryngology), University of Melbourne, Royal Victoria Eye & Ear Hospital, 32 Gisborne St, East Melbourne, VIC 3002, Australia
| | - James M. Begeng
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | | | - Bryony A. Nayagam
- Department of Audiology and Speech Pathology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tatiana Kameneva
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| | - Paul R. Stoddart
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, VIC 3122, Australia
| |
Collapse
|
2
|
Richardson RT, Thompson AC, Wise AK, Needham K. Challenges for the application of optical stimulation in the cochlea for the study and treatment of hearing loss. Expert Opin Biol Ther 2016; 17:213-223. [PMID: 27960585 DOI: 10.1080/14712598.2017.1271870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Electrical stimulation has long been the most effective strategy for evoking neural activity from bionic devices and has been used with great success in the cochlear implant to allow deaf people to hear speech and sound. Despite its success, the spread of electrical current stimulates a broad region of neural tissue meaning that contemporary devices have limited precision. Optical stimulation as an alternative has attracted much recent interest for its capacity to provide highly focused stimuli, and therefore, potentially improved sensory perception. Given its specificity of activation, optical stimulation may also provide a useful tool in the study of fundamental neuroanatomy and neurophysiological processes. Areas covered: This review examines the advances in optical stimulation - infrared, nanoparticle-enhanced, and optogenetic-based - and its application in the inner ear for the restoration of auditory function following hearing loss. Expert opinion: Initial outcomes suggest that optogenetic-based approaches hold the greatest potential and viability amongst optical techniques for application in the cochlea. The future success of this approach will be governed by advances in the targeted delivery of opsins to auditory neurons, improvements in channel kinetics, development of optical arrays, and innovation of opsins that activate within the optimal near-infrared therapeutic window.
Collapse
Affiliation(s)
- Rachael T Richardson
- a Bionics Institute , East Melbourne , Australia.,b Department of Medical Bionics , University of Melbourne , East Melbourne , Australia
| | | | - Andrew K Wise
- a Bionics Institute , East Melbourne , Australia.,b Department of Medical Bionics , University of Melbourne , East Melbourne , Australia
| | - Karina Needham
- d Department of Surgery (Otolaryngology) , University of Melbourne, Royal Victorian Eye & Ear Hospital , East Melbourne , Australia
| |
Collapse
|
3
|
Walsh AJ, Tolstykh GP, Martens S, Ibey BL, Beier HT. Action potential block in neurons by infrared light. NEUROPHOTONICS 2016; 3:040501. [PMID: 27990450 PMCID: PMC5140263 DOI: 10.1117/1.nph.3.4.040501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/08/2016] [Indexed: 05/18/2023]
Abstract
Short infrared laser pulses (SILP) have many physiological effects on cells, including the ability to stimulate action potentials (APs) in neurons. Here, we show that SILPs can also reversibly block APs. Reversible AP block in hippocampal neurons was observed following SILP (0.26 to [Formula: see text]; 1.37 to 5.01 ms; 1869 nm) with the block persisting for more than 1 s with exposures greater than [Formula: see text]. AP block was sustained for 30 s with SILPs pulsed at 1 to 7 Hz. Full recovery of neuronal activity was observed 5 to 30 s post SILP exposure. These results indicate that SILP can be used for noncontact, reversible AP block. Due to the high spatial precision and noncontact manner of infrared light delivery, AP block by SILP (infrared neural inhibition) has the potential to transform medical care for sustained pain inhibition and suppression of unwanted nerve activity.
Collapse
Affiliation(s)
- Alex J. Walsh
- National Research Council, JBSA Fort Sam Houston, Texas 78234, United States
- Air Force Research Laboratory, Bioeffects Division, JBSA Fort Sam Houston, Texas 78234, United States
| | - Gleb P. Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, Texas 78234, United States
| | - Stacey Martens
- Air Force Research Laboratory, Bioeffects Division, JBSA Fort Sam Houston, Texas 78234, United States
| | - Bennett L. Ibey
- Air Force Research Laboratory, Bioeffects Division, JBSA Fort Sam Houston, Texas 78234, United States
| | - Hope T. Beier
- Air Force Research Laboratory, Bioeffects Division, JBSA Fort Sam Houston, Texas 78234, United States
- Address all correspondence to: Hope T. Beier, E-mail:
| |
Collapse
|
4
|
Paviolo C, McArthur SL, Stoddart PR. Gold Nanorod-assisted Optical Stimulation of Neuronal Cells. J Vis Exp 2015:52566. [PMID: 25938822 PMCID: PMC4541599 DOI: 10.3791/52566] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies have demonstrated that nerves can be stimulated in a variety of ways by the transient heating associated with the absorption of infrared light by water in neuronal tissue. This technique holds great potential for replacing or complementing standard stimulation techniques, due to the potential for increased localization of the stimulus and minimization of mechanical contact with the tissue. However, optical approaches are limited by the inability of visible light to penetrate deep into tissues. Moreover, thermal modelling suggests that cumulative heating effects might be potentially hazardous when multiple stimulus sites or high laser repetition rates are used. The protocol outlined below describes an enhanced approach to the infrared stimulation of neuronal cells. The underlying mechanism is based on the transient heating associated with the optical absorption of gold nanorods, which can cause triggering of neuronal cell differentiation and increased levels of intracellular calcium activity. These results demonstrate that nanoparticle absorbers can enhance and/or replace the process of infrared neural stimulation based on water absorption, with potential for future applications in neural prostheses and cell therapies.
Collapse
Affiliation(s)
- Chiara Paviolo
- Biotactical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology;
| | - Sally L McArthur
- Biotactical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology
| | - Paul R Stoddart
- Biotactical Engineering, Faculty of Science, Engineering and Technology, Swinburne University of Technology
| |
Collapse
|