1
|
Tartagni O, Borók A, Mensà E, Bonyár A, Monti B, Hofkens J, Porcelli AM, Zuccheri G. Microstructured soft devices for the growth and analysis of populations of homogenous multicellular tumor spheroids. Cell Mol Life Sci 2023; 80:93. [PMID: 36929461 PMCID: PMC10020259 DOI: 10.1007/s00018-023-04748-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/21/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Multicellular tumor spheroids are rapidly emerging as an improved in vitro model with respect to more traditional 2D culturing. Microwell culturing is a simple and accessible method for generating a large number of uniformly sized spheroids, but commercially available systems often do not enable researchers to perform complete culturing and analysis pipelines and the mechanical properties of their culture environment are not commonly matching those of the target tissue. We herein report a simple method to obtain custom-designed self-built microwell arrays made of polydimethylsiloxane or agarose for uniform 3D cell structure generation. Such materials can provide an environment of tunable mechanical flexibility. We developed protocols to culture a variety of cancer and non-cancer cell lines in such devices and to perform molecular and imaging characterizations of the spheroid growth, viability, and response to pharmacological treatments. Hundreds of tumor spheroids grow (in scaffolded or scaffold-free conditions) at homogeneous rates and can be harvested at will. Microscopy imaging can be performed in situ during or at the end of the culture. Fluorescence (confocal) microscopy can be performed after in situ staining while retaining the geographic arrangement of spheroids in the plate wells. This platform can enable statistically robust investigations on cancer biology and screening of drug treatments.
Collapse
Affiliation(s)
- Ottavia Tartagni
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
| | - Alexandra Borók
- Department of Electronics Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Emanuela Mensà
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
| | - Attila Bonyár
- Department of Electronics Technology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, 3001, Leuven, Belgium
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy
- Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Bologna, Italy
| | - Giampaolo Zuccheri
- Department of Pharmacy and Biotechnology, University of Bologna, Via San Donato, 19/2, 40127, Bologna, Italy.
- Interdepartmental Center for Industrial Research on Health Sciences and Technologies, University of Bologna, Bologna, Italy.
- S3 Center, Institute of Nanoscience, Italian National Research Council, Modena, Italy.
| |
Collapse
|
2
|
Nan L, Zheng Y, Liao N, Li S, Wang Y, Chen Z, Wei L, Zhao S, Mo S. Mechanical force promotes the proliferation and extracellular matrix synthesis of human gingival fibroblasts cultured on 3D PLGA scaffolds via TGF‑β expression. Mol Med Rep 2019; 19:2107-2114. [PMID: 30664222 PMCID: PMC6390077 DOI: 10.3892/mmr.2019.9882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 12/06/2018] [Indexed: 12/02/2022] Open
Abstract
Human gingival fibroblasts (HGFs) are responsible for connective tissue repair and scarring, and are exposed to mechanical forces under physiological and pathological conditions. The exact mechanisms underlying gingival tissue reconstruction under mechanical forces remain unclear. The present study aimfed to investigate the effects of mechanical forces on the proliferation and extracellular matrix synthesis in HGFs by establishing a 3-dimensional (3D) HGF culture model using poly(lactide-co-glycolide) (PLGA) scaffolds. HGFs were cultured in 3D PLGA scaffolds and a mechanical force of 0, 5, 15, 25 or 35 g/cm2 was applied to HGFs for 24 h. A mechanical force of 25 g/cm2 induced the highest proliferation rate, and thus was selected for subsequent experiments. Cell viability was determined using the MTT assay at 0, 24, 48 and 72 h. The expression levels of type I collagen (COL-1) and matrix metallopeptidase (MMP)-1 were examined by reverse transcription-quantitative polymerase chain reaction and ELISA, and transforming growth factor (TGF)-β expression was evaluated by ELISA. The application of mechanical force on HGFs cultured on the 3D PLGA scaffolds resulted in a significant increase in cell proliferation and COL-1 expression, as well as a decrease in MMP-1 expression. A TGF-β1 inhibitor was also applied, which attenuated the effects of mechanical force on HGF proliferation, and COL-1 and MMP-1 expression, thus suggesting that TGF-β signaling pathways may mediate the mechanical force-induced alterations observed in HGFs. In conclusion, these findings helped to clarify the mechanisms underlying mechanical force-induced HGF proliferation and ECM synthesis, which may promote the development of targeted therapeutics to treat various diseases, including gingival atrophy caused by orthodontic treatment.
Collapse
Affiliation(s)
- Lan Nan
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi Zheng
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ni Liao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Songze Li
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yao Wang
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhixing Chen
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Liying Wei
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuang Zhao
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuixue Mo
- Department of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
3
|
Harrington H, Cato P, Salazar F, Wilkinson M, Knox A, Haycock JW, Rose F, Aylott JW, Ghaemmaghami AM. Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation. Mol Pharm 2014; 11:2082-91. [PMID: 24628276 PMCID: PMC4086737 DOI: 10.1021/mp5000295] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of more complex in vitro models for the assessment of novel drugs and chemicals is needed because of the limited biological relevance of animal models to humans as well as ethical considerations. Although some human-cell-based assays exist, they are usually 2D, consist of single cell type, and have limited cellular and functional representation of the native tissue. In this study, we have used biomimetic porous electrospun scaffolds to develop an immunocompetent 3D model of the human respiratory tract comprised of three key cell types present in upper airway epithelium. The three cell types, namely, epithelial cells (providing a physical barrier), fibroblasts (extracellular matrix production), and dendritic cells (immune sensing), were initially grown on individual scaffolds and then assembled into the 3D multicell tissue model. The epithelial layer was cultured at the air-liquid interface for up to four weeks, leading to formation of a functional barrier as evidenced by an increase in transepithelial electrical resistance (TEER) and tight junction formation. The response of epithelial cells to allergen exposure was monitored by quantifying changes in TEER readings and by assessment of cellular tight junctions using immunostaining. It was found that epithelial cells cocultured with fibroblasts formed a functional epithelial barrier at a quicker rate than single cultures of epithelial cells and that the recovery from allergen exposure was also more rapid. Also, our data show that dendritic cells within this model remain viable and responsive to external stimulation as evidenced by their migration within the 3D construct in response to allergen challenge. This model provides an easy to assemble and physiologically relevant 3D model of human airway epithelium that can be used for studies aiming at better understanding lung biology, the cross-talk between immune cells, and airborne allergens and pathogens as well as drug delivery.
Collapse
Affiliation(s)
- Helen Harrington
- Division of Immunology, School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham , Nottingham NG7 2UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|