1
|
Arévalo PR, Aylan B, Gutierrez MG. Quantitative Spatio-temporal Analysis of Phagosome Maturation in Live Cells. Methods Mol Biol 2023; 2692:187-207. [PMID: 37365469 DOI: 10.1007/978-1-0716-3338-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Phagocytosis and phagosome maturation are central processes to the development of the innate and adaptive immune response. Phagosome maturation is a continuous and dynamic process that occurs rapidly. In this chapter we describe fluorescence-based live cell imaging methods for the quantitative and temporal analysis of phagosome maturation of beads and M. tuberculosis as two phagocytic targets. We also describe simple protocols for monitoring phagosome maturation: the use of the acidotropic probe LysoTracker and analyzing the recruitment of EGFP-tagged host proteins by phagosomes.
Collapse
Affiliation(s)
- Patricia Rosell Arévalo
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
2
|
Aylan B, Botella L, Gutierrez MG, Santucci P. High content quantitative imaging of Mycobacterium tuberculosis responses to acidic microenvironments within human macrophages. FEBS Open Bio 2022. [PMID: 36520007 DOI: 10.1002/2211-5463.13537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
Intracellular pathogens such as Mycobacterium tuberculosis (Mtb) have evolved diverse strategies to counteract macrophage defence mechanisms including phagolysosomal biogenesis. Within macrophages, Mtb initially resides inside membrane-bound phagosomes that interact with lysosomes and become acidified. The ability of Mtb to control and subvert the fusion between phagosomes and lysosomes plays a key role in the pathogenesis of tuberculosis. Therefore, understanding how pathogens interact with the endolysosomal network and cope with intracellular acidification is important to better understand the disease. Here, we describe in detail the use of fluorescence microscopy-based approaches to investigate Mtb responses to acidic environments in cellulo. We report high-content imaging modalities to probe Mtb sensing of external pH or visualise in real-time Mtb intrabacterial pH within infected human macrophages. We discuss various methodologies with step-by-step analyses that enable robust image-based quantifications. Finally, we highlight the advantages and limitations of these different approaches and discuss potential alternatives that can be applied to further investigate Mtb-host cell interactions. These methods can be adapted to study host-pathogen interactions in different biological systems and experimental settings. Altogether, these approaches represent a valuable tool to further broaden our understanding of the cellular and molecular mechanisms underlying intracellular pathogen survival.
Collapse
Affiliation(s)
- Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| |
Collapse
|
3
|
Kordon AO, Kalindamar S, Majors K, Abdelhamed H, Tan W, Karsi A, Pinchuk LM. Effects of Live Attenuated Vaccine and Wild Type Strains of Edwardsiella ictaluri on Phagocytosis, Bacterial Killing, and Survival of Catfish B Cells. Front Immunol 2019; 10:2383. [PMID: 31649682 PMCID: PMC6794446 DOI: 10.3389/fimmu.2019.02383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 09/23/2019] [Indexed: 11/13/2022] Open
Abstract
Edwardsiella ictaluri, a Gram-negative facultative intracellular pathogen, is the causative agent of enteric septicemia of catfish (ESC). The innate functions of B cells have been demonstrated in several teleost fish, including zebrafish, rainbow trout, and channel catfish. Recently, our group has developed several protective E. ictaluri live attenuated vaccines (LAVs). However, the innate role of catfish B cells to phagocytose and destroy E. ictaluri wild-type (WT) and live attenuated vaccine (LAV) strains has not been evaluated. In this study, we assessed the efficacy of E. ictaluri WT and two LAVs on phagocytosis, microbial killing, and survival of catfish anterior kidney (AK) B cells. Initially, we documented active uptake of E. ictaluri WT and two LAVs in B cells by flow cytometry and light microscopy. Then, we observed the E. ictaluri strains-induced phagosome and/or phagolysosome formation in the cytoplasm of catfish magnetically sorted IgM+ B cells. Furthermore, we demonstrated that AK B cells were able to destroy the internalized E. ictaluri WT and LAV strains efficiently. Finally, we documented early and late apoptotic/necrotic manifestations induced by E. ictaluri in catfish AK B cells. In conclusion, our results suggest that both LAVs and WT strain initiate similar innate immune responses such as active phagocytic uptake, induced bactericidal activity as well as promote early and late apoptotic changes in catfish B cells. Our data suggest that phagocytic and microbicidal B cells may serve as professional APCs in initiation of protective adaptive immune responses against ESC in channel catfish.
Collapse
Affiliation(s)
- Adef O. Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Safak Kalindamar
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Ordu University, Ordu, Turkey
| | - Kara Majors
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Wei Tan
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Lesya M. Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
4
|
Schnettger L, Rodgers A, Repnik U, Lai RP, Pei G, Verdoes M, Wilkinson RJ, Young DB, Gutierrez MG. A Rab20-Dependent Membrane Trafficking Pathway Controls M. tuberculosis Replication by Regulating Phagosome Spaciousness and Integrity. Cell Host Microbe 2017; 21:619-628.e5. [PMID: 28494243 PMCID: PMC5432432 DOI: 10.1016/j.chom.2017.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/19/2017] [Accepted: 04/20/2017] [Indexed: 12/01/2022]
Abstract
The intracellular pathogen Mycobacterium tuberculosis (Mtb) lives within phagosomes and also disrupts these organelles to access the cytosol. The host pathways and mechanisms that contribute to maintaining Mtb phagosome integrity have not been investigated. Here, we examined the spatiotemporal dynamics of Mtb-containing phagosomes and identified an interferon-gamma-stimulated and Rab20-dependent membrane trafficking pathway in macrophages that maintains Mtb in spacious proteolytic phagolysosomes. This pathway functions to promote endosomal membrane influx in infected macrophages, and is required to preserve Mtb phagosome integrity and control Mtb replication. Rab20 is specifically and significantly upregulated in the sputum of human patients with active tuberculosis. Altogether, we uncover an immune-regulated cellular pathway of defense that promotes maintenance of Mtb within intact membrane-bound compartments for efficient elimination.
Collapse
Affiliation(s)
- Laura Schnettger
- Host-Pathogen Interactions In Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Angela Rodgers
- Mycobacterial Systems Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Urska Repnik
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Rachel P Lai
- Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gang Pei
- Department of Immunology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117 Berlin, Germany
| | - Martijn Verdoes
- Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein 26/28, Nijmegen 6525 GA, the Netherlands
| | - Robert J Wilkinson
- Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Douglas B Young
- Mycobacterial Systems Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions In Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
5
|
Vázquez CL, Rodgers A, Herbst S, Coade S, Gronow A, Guzman CA, Wilson MS, Kanzaki M, Nykjaer A, Gutierrez MG. The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages. Sci Rep 2016; 6:29332. [PMID: 27389464 PMCID: PMC4937236 DOI: 10.1038/srep29332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/16/2016] [Indexed: 02/05/2023] Open
Abstract
Sorting of luminal and membrane proteins into phagosomes is critical for the immune function of this organelle. However, little is known about the mechanisms that contribute to the spatiotemporal regulation of this process. Here, we investigated the role of the proneurotrophin receptor sortilin during phagosome maturation and mycobacterial killing. We show that this receptor is acquired by mycobacteria-containing phagosomes via interactions with the adaptor proteins AP-1 and GGAs. Interestingly, the phagosomal association of sortilin is critical for the delivery of acid sphingomyelinase (ASMase) and required for efficient phagosome maturation. Macrophages from Sort1(-/-) mice are less efficient in restricting the growth of Mycobacterium bovis BCG and M. tuberculosis. In vivo, Sort1(-/-) mice showed a substantial increase in cellular infiltration of neutrophils in their lungs and higher bacterial burden after infection with M. tuberculosis. Altogether, sortilin defines a pathway required for optimal intracellular mycobacteria control and lung inflammation in vivo.
Collapse
Affiliation(s)
- Cristina L Vázquez
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Angela Rodgers
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Susanne Herbst
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Stephen Coade
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Achim Gronow
- Research Group Phagosome Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Carlos A Guzman
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mark S Wilson
- Allergy and Anti-Helminth Immunity Laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Anders Nykjaer
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Aarhus University, DK-8000 Aarhus, Denmark
| | - Maximiliano G Gutierrez
- Host-pathogen interactions in tuberculosis laboratory, The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London, NW7 1AA, UK
| |
Collapse
|