1
|
Cox A, Nierenberg D, Camargo O, Lee E, Khaled AS, Mazar J, Boohaker RJ, Westmoreland TJ, Khaled AR. Chaperonin containing TCP-1 (CCT/TRiC) is a novel therapeutic and diagnostic target for neuroblastoma. Front Oncol 2022; 12:975088. [PMID: 36185250 PMCID: PMC9520665 DOI: 10.3389/fonc.2022.975088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Chaperonin containing TCP1 (CCT/TRiC) is a multi-subunit protein folding complex that enables the cancer phenotype to emerge from the mutational landscape that drives oncogenesis. We and others linked increased expression of CCT subunits to advanced tumor stage and invasiveness that inversely correlates with cancer patient outcomes. In this study, we examined the expression of the second CCT subunit, CCT2, using genomic databases of adult and pediatric tumors and normal tissues, and found that it was highly expressed in pediatric cancers, showing a significant difference compared to normal tissues. Histologic staining confirmed that CCT subunits are highly expressed in tumor tissues, which was exemplified in neuroblastoma. Using two neuroblastoma cells, MYCN-amplified, IMR-32 cells, and non-amplified, SK-N-AS cells, we assessed baseline levels for CCT subunits and found expressions comparable to the highly invasive triple-negative breast cancer (TNBC) cell line, MDA-MB-231. Exogenous expression of CCT2 in both SK-N-AS and IMR-32 cells resulted in morphological changes, such as larger cell size and increased adherence, with significant increases in the CCT substrates, actin, and tubulin, as well as increased migration. Depletion of CCT2 reversed these effects and reduced cell viability. We evaluated CCT as a therapeutic target in IMR-32 cells by testing a novel peptide CCT inhibitor, CT20p. Treatment with CT20p induced cell death in these neuroblastoma cells. The use of CCT2 as a biological indicator for detection of neuroblastoma cells shed in blood was examined by spiking IMR-32 cells into human blood and using an anti-CCT2 antibody for the identification of spiked cancer cells with the CellSearch system. Results showed that using CCT2 for the detection of neuroblastoma cells in blood was more effective than the conventional approach of using epithelial markers like cytokeratins. CCT2 plays an essential role in promoting the invasive capacity of neuroblastoma cells and thus offers the potential to act as a molecular target in the development of novel therapeutics and diagnostics for pediatric cancers.
Collapse
Affiliation(s)
- Amanda Cox
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Oscar Camargo
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Eunkyung Lee
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL, United States
| | - Amr S. Khaled
- Pathology and Laboratory Medicine, Orlando VA Medical Center, Orlando, FL, United States
| | - Joseph Mazar
- Department of Oncology, Southern Research Institute, Nemours Children’s Hospital, Orlando, FL, United States
| | - Rebecca J. Boohaker
- Department of Biomedical Research, Nemours Children’s Hospital, Southern Research, Birmingham, AL, United States
| | - Tamarah J. Westmoreland
- Department of Oncology, Southern Research Institute, Nemours Children’s Hospital, Orlando, FL, United States
| | - Annette R. Khaled
- Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, United States
- *Correspondence: Annette R. Khaled,
| |
Collapse
|
2
|
Chaperonin containing TCP1 as a marker for identification of circulating tumor cells in blood. PLoS One 2022; 17:e0264651. [PMID: 35749519 PMCID: PMC9232171 DOI: 10.1371/journal.pone.0264651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Herein we report the use of Chaperonin-Containing TCP-1 (CCT or TRiC) as a marker to detect circulating tumor cells (CTCs) that are shed from tumors during oncogenesis. Most detection methods used in liquid biopsy approaches for enumeration of CTCs from blood, employ epithelial markers like cytokeratin (CK). However, such markers provide little information on the potential of these shed tumor cells, which are normally short-lived, to seed metastatic sites. To identify a marker that could go beyond enumeration and provide actionable data on CTCs, we evaluated CCT. CCT is a protein-folding complex composed of eight subunits. Previously, we found that expression of the second subunit (CCT2 or CCTβ) inversely correlated with cancer patient survival and was essential for tumorigenesis in mice, driving tumor-promoting processes like proliferation and anchorage-independent growth. In this study, we examined CCT2 expression in cancer compared to normal tissues and found statistically significant increases in tumors. Because not all blood samples from cancer patients contain detectable CTCs, we used the approach of spiking a known number of cancer cells into blood from healthy donors to test a liquid biopsy approach using CCT2 to distinguish rare cancer cells from the large number of non-cancer cells in blood. Using a clinically validated method for capturing CTCs, we evaluated detection of intracellular CCT2 staining for visualization of breast cancer and small cell lung (SCLC) cancer cells. We demonstrated that CCT2 staining could be incorporated into a CTC capture and staining protocol, providing biologically relevant information to improve detection of cancer cells shed in blood. These results were confirmed with a pilot study of blood from SCLC patients. Our studies demonstrate that detection of CCT2 could identify rare cancer cells in blood and has application in liquid biopsy approaches to enhance the use of minimally invasive methods for cancer diagnosis.
Collapse
|
3
|
Kitz J, Goodale D, Postenka C, Lowes LE, Allan AL. EMT-independent detection of circulating tumor cells in human blood samples and pre-clinical mouse models of metastasis. Clin Exp Metastasis 2021; 38:97-108. [PMID: 33415568 PMCID: PMC7882592 DOI: 10.1007/s10585-020-10070-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/25/2020] [Indexed: 01/31/2023]
Abstract
Circulating tumor cells (CTCs) present an opportunity to detect/monitor metastasis throughout disease progression. The CellSearch® is currently the only FDA-approved technology for CTC detection in patients. The main limitation of this system is its reliance on epithelial markers for CTC isolation/enumeration, which reduces its ability to detect more aggressive mesenchymal CTCs that are generated during metastasis via epithelial-to-mesenchymal transition (EMT). This Technical Note describes and validates two EMT-independent CTC analysis protocols; one for human samples using Parsortix® and one for mouse samples using VyCap. Parsortix® identifies significantly more mesenchymal human CTCs compared to the clinical CellSearch® test, and VyCap identifies significantly more CTCs compared to our mouse CellSearch® protocol regardless of EMT status. Recovery and downstream molecular characterization of CTCs is highly feasible using both Parsortix® and VyCap. The described CTC protocols can be used by investigators to study CTC generation, EMT and metastasis in both pre-clinical models and clinical samples.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
- Department of Anatomy & Cell Biology, Western University, London, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, London, Canada
| | - Lori E Lowes
- Flow Cytometry, London Health Sciences Centre, London, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Canada.
- Department of Anatomy & Cell Biology, Western University, London, Canada.
- Department of Oncology, Western University, London, Canada.
- Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
4
|
Burz C, Pop VV, Buiga R, Daniel S, Samasca G, Aldea C, Lupan I. Circulating tumor cells in clinical research and monitoring patients with colorectal cancer. Oncotarget 2018; 9:24561-24571. [PMID: 29849961 PMCID: PMC5966258 DOI: 10.18632/oncotarget.25337] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer remains a frequent disease to which screening and target therapy exist, but despite this is still marked by a high mortality rate. Even though radical surgery may be performed in many cases, patients relapse with metastatic disease. Circulating tumor cells were incriminated for tumor recurrence, that's why vigorous research started on their field. Owning prognostic and predictive value, it was revealed their usefulness in disease monitoring. Moreover, they may serve as liquid biopsies for genetic tests in cases where tissue biopsy is contraindicated or cannot be performed. In spite of these advantages, they were not included in clinical guidelines, despite CellSearch and many other detection methods were developed to ease the identification of circulating tumor cells. This review highlights the implication of circulating tumor cells in metastasis cascade, intrinsic tumor cells mechanisms and correlations with clinical parameters along with their utility for medical practice and detection techniques.
Collapse
Affiliation(s)
- Claudia Burz
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Vlad-Vasile Pop
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania
| | - Rares Buiga
- Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Sur Daniel
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Ion Chiricuta Institute of Oncology, Cluj-Napoca, Romania
| | - Gabriel Samasca
- Iuliu Hatieganu University of Medicine and Pharmacy, Department Of Immunology and Allergology, Cluj-Napoca, Romania.,Emergency Hospital for Children, Cluj-Napoca, Romania
| | - Cornel Aldea
- Emergency Hospital for Children, Cluj-Napoca, Romania
| | - Iulia Lupan
- Babeş-Bolyai University, Department of Molecular Biology and Biotehnology, Cluj-Napoca, Romania.,Institute of Interdisciplinary Research in Bio-Nano-Sciences, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Kitz J, Lowes LE, Goodale D, Allan AL. Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis. Diagnostics (Basel) 2018; 8:E30. [PMID: 29710776 PMCID: PMC6023422 DOI: 10.3390/diagnostics8020030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023] Open
Abstract
The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch® and Parsortix™ platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside.
Collapse
Affiliation(s)
- Jenna Kitz
- London Regional Cancer Program, London Health Sciences Centre, Department of Anatomy & Cell Biology, Western University, London, ON N6A 5W9, Canada.
| | - Lori E Lowes
- Flow Cytometry and Special Hematology, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, ON N6A 5W9, Canada.
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, Departments of Anatomy & Cell Biology and Oncology, Lawson Health Research Institute, Western University, London, ON N6A 5W9, Canada.
| |
Collapse
|
6
|
Lowes LE, Goodale D, Xia Y, Postenka C, Piaseczny MM, Paczkowski F, Allan AL. Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer. Oncotarget 2018; 7:76125-76139. [PMID: 27764810 PMCID: PMC5342801 DOI: 10.18632/oncotarget.12682] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Metastasis is the cause of most prostate cancer (PCa) deaths and has been associated with circulating tumor cells (CTCs). The presence of ≥5 CTCs/7.5mL of blood is a poor prognosis indicator in metastatic PCa when assessed by the CellSearch® system, the “gold standard” clinical platform. However, ~35% of metastatic PCa patients assessed by CellSearch® have undetectable CTCs. We hypothesize that this is due to epithelial-to-mesenchymal transition (EMT) and subsequent loss of necessary CTC detection markers, with important implications for PCa metastasis. Two pre-clinical assays were developed to assess human CTCs in xenograft models; one comparable to CellSearch® (EpCAM-based) and one detecting CTCs semi-independent of EMT status via combined staining with EpCAM/HLA (human leukocyte antigen). In vivo differences in CTC generation, kinetics, metastasis and EMT status were determined using 4 PCa models with progressive epithelial (LNCaP, LNCaP-C42B) to mesenchymal (PC-3, PC-3M) phenotypes. Assay validation demonstrated that the CellSearch®-based assay failed to detect a significant number (~40-50%) of mesenchymal CTCs. In vivo, PCa with an increasingly mesenchymal phenotype shed greater numbers of CTCs more quickly and with greater metastatic capacity than PCa with an epithelial phenotype. Notably, the CellSearch®-based assay captured the majority of CTCs shed during early-stage disease in vivo, and only after establishment of metastases were a significant number of undetectable CTCs present. This study provides important insight into the influence of EMT on CTC generation and subsequent metastasis, and highlights that novel technologies aimed at capturing mesenchymal CTCs may only be useful in the setting of advanced metastatic disease.
Collapse
Affiliation(s)
- Lori E Lowes
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Ying Xia
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Carl Postenka
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Matthew M Piaseczny
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada
| | - Freeman Paczkowski
- London Regional Cancer Program, London Health Sciences Centre, London ON, Canada
| | - Alison L Allan
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London ON, Canada.,London Regional Cancer Program, London Health Sciences Centre, London ON, Canada.,Lawson Health Research Institute, London ON, Canada
| |
Collapse
|
7
|
Sun YF, Guo W, Xu Y, Shi YH, Gong ZJ, Ji Y, Du M, Zhang X, Hu B, Huang A, Chen GG, Lai PBS, Cao Y, Qiu SJ, Zhou J, Yang XR, Fan J. Circulating Tumor Cells from Different Vascular Sites Exhibit Spatial Heterogeneity in Epithelial and Mesenchymal Composition and Distinct Clinical Significance in Hepatocellular Carcinoma. Clin Cancer Res 2017; 24:547-559. [PMID: 29070526 DOI: 10.1158/1078-0432.ccr-17-1063] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 08/09/2017] [Accepted: 10/18/2017] [Indexed: 12/17/2022]
Abstract
Purpose: The spatial heterogeneity of phenotypic and molecular characteristics of CTCs within the circulatory system remains unclear. Herein, we mapped the distribution and characterized biological features of CTCs along the transportation route in hepatocellular carcinoma (HCC).Experimental Design: In 73 localized HCC patients, blood was drawn from peripheral vein (PV), peripheral artery (PA), hepatic veins (HV), infrahepatic inferior vena cava (IHIVC), and portal vein (PoV) before tumor resection. Epithelial and mesenchymal transition (EMT) phenotype in CTCs were analyzed by a 4-channel immunofluorescence CellSearch assay and microfluidic quantitative RT-PCR. The clinical significance of CTCs from different vascular sites was evaluated.Results: The CTC number and size gradient between tumor efferent vessels and postpulmonary peripheral vessels was marked. Tracking the fate of CTC clusters revealed that CTCs displayed an aggregated-singular-aggregated manner of spreading. Single-cell characterization demonstrated that EMT status of CTCs was heterogeneous across different vascular compartments. CTCs were predominantly epithelial at release, but switched to EMT-activated phenotype during hematogeneous transit via Smad2 and β-catenin related signaling pathways. EMT activation in primary tumor correlated with total CTC number at HV, rather than epithelial or EMT-activated subsets of CTCs. Follow-up analysis suggested that CTC and circulating tumor microemboli burden in hepatic veins and peripheral circulation prognosticated postoperative lung metastasis and intrahepatic recurrence, respectively.Conclusions: The current data suggested that a profound spatial heterogeneity in cellular distribution and biological features existed among CTCs during circulation. Multivascular measurement of CTCs could help to reveal novel mechanisms of metastasis and facilitate prediction of postoperative relapse or metastasis pattern in HCC. Clin Cancer Res; 24(3); 547-59. ©2017 AACR.
Collapse
Affiliation(s)
- Yun-Fan Sun
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Yang Xu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yin-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Zi-Jun Gong
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Min Du
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P.R. China
| | - Xin Zhang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Bo Hu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Ao Huang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - George G Chen
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Changsha, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| | - Xin-Rong Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China.
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, P.R. China. .,Institute of Biomedical Sciences, Fudan University, Shanghai, P.R. China
| |
Collapse
|
8
|
Swennenhuis JF, van Dalum G, Zeune LL, Terstappen LWMM. Improving the CellSearch® system. Expert Rev Mol Diagn 2016; 16:1291-1305. [PMID: 27797592 DOI: 10.1080/14737159.2016.1255144] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The CellSearch® CTC test enumerates tumor cells present in 7.5 ml blood of cancer patients. improvements, extensions and different utilities of the cellsearch system are discussed in this paper. Areas covered: This paper describes work performed with the CellSearch system, which go beyond the normal scope of the test. All results from searches with the search term 'CellSearch' from Web of Science and PubMed were categorized and discussed. Expert commentary: The CellSearch Circulating Tumor Cell test captures and identifies tumor cells in blood that are associated with poor clinical outcome. How to best use CTC in clinical practice is being explored in many clinical trials. The ability to extract information from the CTC to guide therapy will expand the potential clinical utility of CTC.
Collapse
Affiliation(s)
- J F Swennenhuis
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - G van Dalum
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L L Zeune
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L W M M Terstappen
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| |
Collapse
|