1
|
Thompson CM, Malone JG. Nucleotide second messengers in bacterial decision making. Curr Opin Microbiol 2020; 55:34-39. [PMID: 32172083 PMCID: PMC7322531 DOI: 10.1016/j.mib.2020.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/28/2022]
Abstract
Structural analysis of NSM regulators reveals new mechanisms of NSM signalling. NSM proteins binding multiple ligands support crosstalk between signalling networks. NSM networks control structure and heterogeneity in complex microbial communities. The diversity of bacterial NSM regulators is far higher than previously thought. The (p)ppApp toxin suggests non-signalling roles exist for bacterial NSMs.
Since the initial discovery of bacterial nucleotide second messengers (NSMs), we have made huge progress towards understanding these complex signalling networks. Many NSM networks contain dozens of metabolic enzymes and binding targets, whose activity is tightly controlled at every regulatory level. They function as global regulators and in specific signalling circuits, controlling multiple aspects of bacterial behaviour and development. Despite these advances there is much still to discover, with current research focussing on the molecular mechanisms of signalling circuits, the role of the environment in controlling NSM pathways and attempts to understand signalling at the whole cell/community level. Here we examine recent developments in the NSM signalling field and discuss their implications for understanding this important driver of microbial behaviour.
Collapse
Affiliation(s)
- Catriona Ma Thompson
- Molecular Microbiology Department, John Innes Centre, Norwich, UK; School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Jacob G Malone
- Molecular Microbiology Department, John Innes Centre, Norwich, UK; School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
2
|
Structural Conservation and Diversity of PilZ-Related Domains. J Bacteriol 2020; 202:JB.00664-19. [PMID: 31740493 DOI: 10.1128/jb.00664-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023] Open
Abstract
The widespread bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a variety of processes, including protein secretion, motility, cell development, and biofilm formation. c-di-GMP-dependent responses are often mediated by its binding to the cytoplasmic receptors that contain the PilZ domain. Here, we present comparative structural and sequence analysis of various PilZ-related domains and describe three principal types of them: (i) the canonical PilZ domain, whose structure includes a six-stranded beta-barrel and a C-terminal alpha helix, (ii) an atypical PilZ domain that contains two extra alpha helices and forms stable tetramers, and (iii) divergent PilZ-related domains, which include the eponymous PilZ protein and PilZN (YcgR_N) and PilZNR (YcgR_2) domains. We refine the second c-di-GMP binding motif of PilZ as [D/N]hSXXG and show that the hydrophobic residue h of this motif interacts with a cluster of conserved hydrophobic residues, helping maintain the PilZ domain fold. We describe several novel PilZN-type domains that are fused to the canonical PilZ domains in specific taxa, such as spirochetes, actinobacteria, aquificae, cellulose-degrading clostridia, and deltaproteobacteria. We propose that the evolution of the three major groups of PilZ domains included (i) fusion of pilZ with other genes, which produced Alg44, cellulose synthase, and other multidomain proteins; (ii) insertion of an ∼200-bp fragment, which resulted in the formation of tetramer-forming PilZ proteins; and (iii) tandem duplication of pilZ genes, which led to the formation of PilZ dimers and YcgR-like proteins.IMPORTANCE c-di-GMP is a ubiquitous bacterial second messenger that regulates motility, biofilm formation, and virulence of many bacterial pathogens. The PilZ domain is a widespread c-di-GMP receptor that binds c-di-GMP through its RXXXR and [D/N]hSXXG motifs; some PilZ domains lack these motifs and are unable to bind c-di-GMP. We used structural and sequence analysis to assess the diversity of PilZ-related domains and define their common features. We show that the hydrophobic residue h in the second position of the second motif is highly conserved; it may serve as a readout for c-di-GMP binding. We describe three principal classes of PilZ-related domains, canonical, tetramer-forming, and divergent PilZ domains, and propose the evolutionary pathways that led to the emergence of these PilZ types.
Collapse
|
3
|
Laventie BJ, Sangermani M, Estermann F, Manfredi P, Planes R, Hug I, Jaeger T, Meunier E, Broz P, Jenal U. A Surface-Induced Asymmetric Program Promotes Tissue Colonization by Pseudomonas aeruginosa. Cell Host Microbe 2018; 25:140-152.e6. [PMID: 30581112 DOI: 10.1016/j.chom.2018.11.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/28/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa effectively colonizes host epithelia using pili as primary adhesins. Here we uncover a surface-specific asymmetric virulence program that enhances P. aeruginosa host colonization. We show that when P. aeruginosa encounters surfaces, the concentration of the second messenger c-di-GMP increases within a few seconds. This leads to surface adherence and virulence induction by stimulating pili assembly through activation of the c-di-GMP receptor FimW. Surface-attached bacteria divide asymmetrically to generate a piliated, surface-committed progeny (striker) and a flagellated, motile offspring that leaves the surface to colonize distant sites (spreader). Cell differentiation is driven by a phosphodiesterase that asymmetrically positions to the flagellated pole, thereby maintaining c-di-GMP levels low in the motile offspring. Infection experiments demonstrate that cellular asymmetry strongly boosts infection spread and tissue damage. Thus, P. aeruginosa promotes surface colonization and infection transmission through a cooperative virulence program that we termed Touch-Seed-and-Go.
Collapse
Affiliation(s)
| | - Matteo Sangermani
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Fabienne Estermann
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Pablo Manfredi
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Isabelle Hug
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | - Tina Jaeger
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| | | | - Petr Broz
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Urs Jenal
- Focal Area Infection Biology, Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Laventie BJ, Glatter T, Jenal U. Pull-Down with a c-di-GMP-Specific Capture Compound Coupled to Mass Spectrometry as a Powerful Tool to Identify Novel Effector Proteins. Methods Mol Biol 2018; 1657:361-376. [PMID: 28889308 DOI: 10.1007/978-1-4939-7240-1_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Capture compound technology coupled to mass spectrometry (CCMS) allows to biochemically identify ligand receptors. Using a c-di-GMP-specific Capture Compound, we adapted this method for the identification and characterization of c-di-GMP binding proteins in any bacterial species. Because in silico analysis often fails to predict novel c-di-GMP effectors, this universal method aims at better defining the cellular c-di-GMP network in a wide range of bacteria. CCMS was successfully applied in several bacterial species (Nesper et al., J Proteom 75:4874-4878, 2012; Steiner et al., EMBO J 32:354-368, 2013; Tschowri et al., Cell 158:1136-1147, 2014; Trampari et al., J Biol Chem 290:24470-24483, 2015; Rotem et al., J Bacteriol 198:127-137, 2015). To outline the detailed protocol and to illustrate its power, we use Pseudomonas aeruginosa, an opportunistic pathogen in which c-di-GMP plays a critical role in virulence and biofilm control, as an example. CCMS identified 74% (38/51) of the known or predicted components of the c-di-GMP network.
Collapse
Affiliation(s)
| | - Timo Glatter
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
- Facility for Mass Spectrometry and Proteomics, Max-Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Urs Jenal
- Infection Biology, Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Nesper J, Hug I, Kato S, Hee CS, Habazettl JM, Manfredi P, Grzesiek S, Schirmer T, Emonet T, Jenal U. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife 2017; 6:28842. [PMID: 29091032 PMCID: PMC5677366 DOI: 10.7554/elife.28842] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/28/2017] [Indexed: 12/22/2022] Open
Abstract
The flagellar motor is a sophisticated rotary machine facilitating locomotion and signal transduction. Owing to its important role in bacterial behavior, its assembly and activity are tightly regulated. For example, chemotaxis relies on a sensory pathway coupling chemical information to rotational bias of the motor through phosphorylation of the motor switch protein CheY. Using a chemical proteomics approach, we identified a novel family of CheY-like (Cle) proteins in Caulobacter crescentus, which tune flagellar activity in response to binding of the second messenger c-di-GMP to a C-terminal extension. In their c-di-GMP bound conformation Cle proteins interact with the flagellar switch to control motor activity. We show that individual Cle proteins have adopted discrete cellular functions by interfering with chemotaxis and by promoting rapid surface attachment of motile cells. This study broadens the regulatory versatility of bacterial motors and unfolds mechanisms that tie motor activity to mechanical cues and bacterial surface adaptation.
Collapse
Affiliation(s)
- Jutta Nesper
- Focal Area of Infection Biology, Biozentrum of the University of Basel, Basel, Switzerland
| | - Isabelle Hug
- Focal Area of Infection Biology, Biozentrum of the University of Basel, Basel, Switzerland
| | - Setsu Kato
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Chee-Seng Hee
- Focal Area of Structural Biology and Biophysics, Biozentrum of the University of Basel, Basel, Switzerland
| | - Judith Maria Habazettl
- Focal Area of Structural Biology and Biophysics, Biozentrum of the University of Basel, Basel, Switzerland
| | - Pablo Manfredi
- Focal Area of Infection Biology, Biozentrum of the University of Basel, Basel, Switzerland
| | - Stephan Grzesiek
- Focal Area of Structural Biology and Biophysics, Biozentrum of the University of Basel, Basel, Switzerland
| | - Tilman Schirmer
- Focal Area of Structural Biology and Biophysics, Biozentrum of the University of Basel, Basel, Switzerland
| | - Thierry Emonet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,Department of Physics, Yale University, New Haven, United States
| | - Urs Jenal
- Focal Area of Infection Biology, Biozentrum of the University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Abstract
Cyclic dinucleotides (CDNs) are highly versatile signalling molecules that control various important biological processes in bacteria. The best-studied example is cyclic di-GMP (c-di-GMP). Known since the late 1980s, it is now recognized as a near-ubiquitous second messenger that coordinates diverse aspects of bacterial growth and behaviour, including motility, virulence, biofilm formation and cell cycle progression. In this Review, we discuss important new insights that have been gained into the molecular principles of c-di-GMP synthesis and degradation, which are mediated by diguanylate cyclases and c-di-GMP-specific phosphodiesterases, respectively, and the cellular functions that are exerted by c-di-GMP-binding effectors and their diverse targets. Finally, we provide a short overview of the signalling versatility of other CDNs, including c-di-AMP and cGMP-AMP (cGAMP).
Collapse
|
7
|
McLellan M, Doyle MGJ, Bodnar ED, Lopez PG, Domalaon R, Roy R, Cordova K, Schweizer F, Perreault H. Multiplexed azido-group isotopic capture (MAGIC) beads: Selective analysis of azido compounds using a propargyl-based cleavable linker, a proof of concept. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2497-2507. [PMID: 27650360 DOI: 10.1002/rcm.7744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE A cleavable linker is designed and synthesized for the selective capture of azide-containing compounds. This article presents a proof of concept methodology involving the use of peptide-functionalized aminopropyl silica, on which the peptide is constructed by solid-phase peptide synthesis. METHODS The peptide linker has L-propargylglycine (Pra) at one terminal end to allow the conjugation of azide-containing molecules by copper assisted azide alkyne cycloaddition, also known as click reaction. L-Arginine (Arg) is placed just before Pra to permit the release of the captured product by tryptic cleavage. Three glycine (Gly) residues, as part of the linker, are appended to the silica bead to present a spacer section that allows efficient tryptic cleavage devoid of steric hindrance imposed by the bulky bead. The bead composition is Si-O-propyl-NH-Gly-Gly-Gly-Arg-Pra. RESULTS This solid-phase material can be used to capture and release azide-functionalized compounds. The beads are first tested on three azido compounds, 2-azido-2-deoxyglucose (ADG), BOC-p-azido-Phe-OH (BAzPhe), where BOC = tert-butoxycarbonyl, and tetraacetylated-N-azidomannosamine (Ac4 ManNAz). Copper-mediated click reaction conditions are used and released products are characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and tandem MS (MS/MS). CONCLUSIONS This method allows easy identification of captured compounds based on mass and fragmentation analysis. Moreover, it is useful for the analysis of small azide-containing compounds by MALDI-TOF-MS which may not be possible otherwise due to matrix interferences. The insertion of isotopically labeled Arg residues provides the possibility of multiplex analysis, from which the beads have been called MAGIC (for Multiplexed Azido-Group Isotopic Capture). Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Michelle McLellan
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Michael G J Doyle
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Edward D Bodnar
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Paul G Lopez
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Ronald Domalaon
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Rini Roy
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Katherine Cordova
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Frank Schweizer
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Hélène Perreault
- University of Manitoba, Chemistry Parker 550, 144 Dysart Road, Winnipeg, Manitoba, Canada, R3T 2N2
| |
Collapse
|
8
|
Biofilms 2015: Multidisciplinary Approaches Shed Light into Microbial Life on Surfaces. J Bacteriol 2016; 198:2553-63. [PMID: 26977109 DOI: 10.1128/jb.00156-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The 7th ASM Conference on Biofilms was held in Chicago, Illinois, from 24 to 29 October 2015. The conference provided an international forum for biofilm researchers across academic and industry platforms, and from different scientific disciplines, to present and discuss new findings and ideas. The meeting covered a wide range of topics, spanning environmental sciences, applied biology, evolution, ecology, physiology, and molecular biology of the biofilm lifestyle. This report summarizes the presentations with regard to emerging biofilm-related themes.
Collapse
|
9
|
Valentini M, Filloux A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria. J Biol Chem 2016; 291:12547-12555. [PMID: 27129226 PMCID: PMC4933438 DOI: 10.1074/jbc.r115.711507] [Citation(s) in RCA: 360] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission.
Collapse
Affiliation(s)
- Martina Valentini
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
10
|
Secreted Cyclic Di-GMP Induces Stalk Cell Differentiation in the Eukaryote Dictyostelium discoideum. J Bacteriol 2016; 198:27-31. [PMID: 26013485 PMCID: PMC4686194 DOI: 10.1128/jb.00321-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cyclic di-GMP (c-di-GMP) is currently recognized as the most widely used intracellular signal molecule in prokaryotes, but roles in eukaryotes were only recently discovered. In the social amoeba Dictyostelium discoideum, c-di-GMP, produced by a prokaryote-type diguanylate cyclase, induces the differentiation of stalk cells, thereby enabling the formation of spore-bearing fruiting bodies. In this review, we summarize the currently known mechanisms that control the major life cycle transitions of Dictyostelium and focus particularly on the role of c-di-GMP in stalk formation. Stalk cell differentiation has characteristics of autophagic cell death, a process that also occurs in higher eukaryotes. We discuss the respective roles of c-di-GMP and of another signal molecule, differentiation-inducing factor 1, in autophagic cell death in vitro and in stalk formation in vivo.
Collapse
|
11
|
An Extended Cyclic Di-GMP Network in the Predatory Bacterium Bdellovibrio bacteriovorus. J Bacteriol 2015; 198:127-37. [PMID: 26324450 DOI: 10.1128/jb.00422-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/20/2015] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Over the course of the last 3 decades the role of the second messenger cyclic di-GMP (c-di-GMP) as a master regulator of bacterial physiology was determined. Although the control over c-di-GMP levels via synthesis and breakdown and the allosteric regulation of c-di-GMP over receptor proteins (effectors) and riboswitches have been extensively studied, relatively few effectors have been identified and most are of unknown functions. The obligate predatory bacterium Bdellovibrio bacteriovorus has a peculiar dimorphic life cycle, in which a phenotypic transition from a free-living attack phase (AP) to a sessile, intracellular predatory growth phase (GP) is tightly regulated by specific c-di-GMP diguanylate cyclases. B. bacteriovorus also bears one of the largest complement of defined effectors, almost none of known functions, suggesting that additional proteins may be involved in c-di-GMP signaling. In order to uncover novel c-di-GMP effectors, a c-di-GMP capture-compound mass-spectroscopy experiment was performed on wild-type AP and host-independent (HI) mutant cultures, the latter serving as a proxy for wild-type GP cells. Eighty-four proteins were identified as candidate c-di-GMP binders. Of these proteins, 65 did not include any recognized c-di-GMP binding site, and 3 carried known unorthodox binding sites. Putative functions could be assigned to 59 proteins. These proteins are included in metabolic pathways, regulatory circuits, cell transport, and motility, thereby creating a potentially large c-di-GMP network. False candidate effectors may include members of protein complexes, as well as proteins binding nucleotides or other cofactors that were, respectively, carried over or unspecifically interacted with the capture compound during the pulldown. Of the 84 candidates, 62 were found to specifically bind the c-di-GMP capture compound in AP or in HI cultures, suggesting c-di-GMP control over the whole-cell cycle of the bacterium. High affinity and specificity to c-di-GMP binding were confirmed using microscale thermophoresis with a hypothetical protein bearing a PilZ domain, an acyl coenzyme A dehydrogenase, and a two-component system response regulator, indicating that additional c-di-GMP binding candidates may be bona fide novel effectors. IMPORTANCE In this study, 84 putative c-di-GMP binding proteins were identified in B. bacteriovorus, an obligate predatory bacterium whose lifestyle and reproduction are dependent on c-di-GMP signaling, using a c-di-GMP capture compound precipitation approach. This predicted complement covers metabolic, energy, transport, motility and regulatory pathways, and most of it is phase specific, i.e., 62 candidates bind the capture compound at defined modes of B. bacteriovorus lifestyle. Three of the putative binders further demonstrated specificity and high affinity to c-di-GMP via microscale thermophoresis, lending support for the presence of additional bona fide c-di-GMP effectors among the pulled-down protein repertoire.
Collapse
|