1
|
Koene JM, Jackson DJ, Nakadera Y, Cerveau N, Madoui MA, Noel B, Jamilloux V, Poulain J, Labadie K, Da Silva C, Davison A, Feng ZP, Adema CM, Klopp C, Aury JM, Wincker P, Coutellec MA. The genome of the simultaneously hermaphroditic snail Lymnaea stagnalis reveals an evolutionary expansion of FMRFamide-like receptors. Sci Rep 2024; 14:29213. [PMID: 39587195 PMCID: PMC11589774 DOI: 10.1038/s41598-024-78520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024] Open
Abstract
The great pond snail Lymnaea stagnalis has served as a model organism for over a century in diverse disciplines such as neurophysiology, evolution, ecotoxicology and developmental biology. To support both established uses and newly emerging research interests we have performed whole genome sequencing (avg.176 × depth), assembly and annotation of a single individual derived from an inbred line. These efforts resulted in a final assembly of 943 Mb (L50 = 257; N50 = 957,215) with a total of 22,499 predicted gene models. The mitogenome was found to be 13,834 bp long and similarly organized as in other lymnaeid species, with minor differences in location of tRNA genes. As a first step towards understanding the hermaphroditic reproductive biology of L. stagnalis, we identified molecular receptors, specifically nuclear receptors (including newly discovered 2xDNA binding domain-NRs), G protein-coupled receptors, and receptor tyrosine kinases, that may be involved in the cellular specification and maintenance of simultaneously active male and female reproductive systems. A phylogenetic analysis of one particular family of GPCRs (Rhodopsin neuropeptide FMRFamide-receptor-like genes) shows a remarkable expansion that coincides with the occurrence of simultaneous hermaphroditism in the Euthyneura gastropods. As some GPCRs and NRs also showed qualitative differences in expression in female (albumen gland) and male (prostate gland) organs, it is possible that separate regulation of male and female reproductive processes may in part have been enabled by an increased abundance of receptors in the transition from a separate-sexed state to a hermaphroditic condition. These findings will support efforts to pair receptors with their activating ligands, and more generally stimulate deeper insight into the mechanisms that underlie the modes of action of compounds involved in neuroendocrine regulation of reproduction, induced toxicity, and development in L. stagnalis, and molluscs in general.
Collapse
Affiliation(s)
- J M Koene
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - D J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - Y Nakadera
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - N Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Goldschmidtstr. 3, 37077, Göttingen, Germany
| | - M A Madoui
- SEPIA, Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-aux-Roses, France
| | - B Noel
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - V Jamilloux
- URGI, INRAE, Université Paris-Saclay, Route de Saint-Cyr, 78026, Versailles, France
| | - J Poulain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - K Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - C Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - A Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Z P Feng
- Department of Physiology, University of Toronto, 1 King's College, Toronto, ON, M5S 1A8, Canada
| | - C M Adema
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque, NM, 87112, USA
| | - C Klopp
- INRAE, Sigenae, BioInfoMics MIAT, UR875, INRAE, Castanet-Tolosan, France
| | - J M Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - P Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université Paris-Saclay, 91057, Evry, France
| | - M A Coutellec
- DECOD (Ecosystem Dynamics and Sustainability), L'Institut Agro, Ifremer, INRAE, 35042, Rennes, France.
| |
Collapse
|
2
|
Hussein AAA, Abd El-Latif MB, Saad El-Din MI, El-Shenawy NS, Hammam O, Ibrahim AM. The Molluscicidal Activity of Green Synthesized Copper Oxide-Based Annona squamosa Seed Extract Nanoparticles on the Feeding Behavior, Biochemical, Molecular, and Immunohistochemical Alterations of Biomphalaria alexandrina Snails. Biol Trace Elem Res 2024; 202:2327-2337. [PMID: 37648936 PMCID: PMC10954926 DOI: 10.1007/s12011-023-03823-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Because of their low ecological impact, plant molluscicides have garnered much attention. The work aimed to find out if Annona squamosa (AS) seed extract has a molluscicidal impact on Biomphalaria alexandrina snails and enhances this extract by adding CuO nanoparticles (NPs). Using a scanning electron microscope (SEM), transmission electron microscope (TEM), and PANalytical X'Pert PRO X-ray diffractometer (XRD), the presence of the green A. squamosa-based CuO NPs (AS-CuO NPs) was confirmed. After 24 h of exposure, the half-lethal concentration (LC50) of AS-CuO NPs was more toxic to mature B. alexandrina than the aqueous extract of AS seeds (LC50: 119.25 mg/L vs. 169.03 mg/L). The results show that snails exposed to sublethal doses of AS-CuO NPs at LC10 or LC25 (95.4 or 106.7 mg/L, respectively) had much higher glucose levels and alkaline phosphatase activity than those not exposed. Nevertheless, there was no discernible change in the protein content in general or glycogen phosphorylase production. Histological and immunohistochemical analysis showed that snails exposed to A. squamosa-derived CuO NPs LC10 had shrinking digestive tubules and degeneration as well as vacuolation of many digestive, secretory, ova, and sperm cells, with PCNA expressing positively in the hermaphrodite gland and digestive tubule cells. The toxic profile of green CuO NPs produced by A. squamosa may damage the biological activity of B. alexandrina snails; thus, this compound could be used as a molluscicidal base. Furthermore, B. alexandrina proved to be a useful biomarker of nanomaterial contamination.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt.
| | - Mona B Abd El-Latif
- Environmental Research Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Marwa I Saad El-Din
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Olfat Hammam
- Pathology Department, Theodore Bilharz Research Institute, Giza, Egypt
| | - Amina M Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
3
|
van Dijk SM, Zizzari ZV, Koene JM, Nakadera Y. Sublethal heat reduces overall reproductive investment and male allocation in a simultaneously hermaphroditic snail species. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231287. [PMID: 38328564 PMCID: PMC10846933 DOI: 10.1098/rsos.231287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
The exposure to sublethally high temperature reduces reproductive performance in diverse organisms. Although this effect has been particularly emphasized for males or male reproductive functioning, it remains largely unknown whether the effect of heat on fertility is sex-specific. Here we examined the impact of sublethally high temperature on male and female functions in a simultaneously hermaphroditic snail species, Lymnaea stagnalis. Examining hermaphrodites is useful to evaluate the sex-specific impacts of heat exposure, since they possess male and female functions within a single individual, sharing genetic and environmental factors. Moreover, previously developed sex allocation theory allows us to compare the differential performance of sex functions. In this study, we exposed snails to 20°C (control), 24°C and 28°C for 14 days and assessed their egg and sperm production, sperm transfer, mating behaviour and growth. Both types of gamete production were significantly reduced by higher temperature, leading to an overall reduction of reproductive investment. By quantifying sex allocation, we furthermore revealed that the heat-stressed snails reduced the relative investment in their male function. This study illustrates that examining simultaneous hermaphrodites can provide significant insights for the impact of heat, and the proximate mechanism, on reproduction in diverse organisms.
Collapse
Affiliation(s)
- Shanna M. van Dijk
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Z. Valentina Zizzari
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Joris M. Koene
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| | - Yumi Nakadera
- Ecology and Evolution, Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, Noord-Holland, The Netherlands
| |
Collapse
|
4
|
Ledder M, Nakadera Y, Staikou A, Koene JM. Dominant gingers - Discovery and inheritance of a new shell polymorphism in the great pond snail Lymnaea stagnalis. Ecol Evol 2023; 13:e10678. [PMID: 38077508 PMCID: PMC10701294 DOI: 10.1002/ece3.10678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/28/2023] [Accepted: 10/17/2023] [Indexed: 10/16/2024] Open
Abstract
Color polymorphism is a classic study system for evolutionary genetics. One of the most color-polymorphic animal taxa is mollusks, but the investigation of the genetic basis of color determination is often hindered by their life history and the limited availability of genetic resources. Here, we report on the discovery of shell color polymorphism in a much-used model species, the great pond snail Lymnaea stagnalis. While their shell is usually beige, some individuals from a Greek population show a distinct red shell color, which we nicknamed Ginger. Moreover, we found that the inheritance fits simple, single-locus Mendelian inheritance with dominance of the Ginger allele. We also compared crucial life-history traits between Ginger and wild-type individuals, and found no differences between morphs. We conclude that the relative simplicity of this polymorphism will provide new opportunities for a deeper understanding of the genetic basis of shell color polymorphism and its evolutionary origin.
Collapse
Affiliation(s)
- Matthijs Ledder
- Ecology and Evolution A-LIFE, Vrije Universiteit Amsterdam Amsterdam the Netherlands
| | - Yumi Nakadera
- Ecology and Evolution A-LIFE, Vrije Universiteit Amsterdam Amsterdam the Netherlands
| | - Alexandra Staikou
- Department of Zoology, School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
| | - Joris M Koene
- Ecology and Evolution A-LIFE, Vrije Universiteit Amsterdam Amsterdam the Netherlands
- Evolutionary Ecology Naturalis Biodiversity Centre Leiden the Netherlands
| |
Collapse
|
5
|
Patlar B. On the Role of Seminal Fluid Protein and Nucleic Acid Content in Paternal Epigenetic Inheritance. Int J Mol Sci 2022; 23:ijms232314533. [PMID: 36498858 PMCID: PMC9739459 DOI: 10.3390/ijms232314533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The evidence supports the occurrence of environmentally-induced paternal epigenetic inheritance that shapes the offspring phenotype in the absence of direct or indirect paternal care and clearly demonstrates that sperm epigenetics is one of the major actors mediating these paternal effects. However, in most animals, while sperm makes up only a small portion of the seminal fluid, males also have a complex mixture of proteins, peptides, different types of small noncoding RNAs, and cell-free DNA fragments in their ejaculate. These seminal fluid contents (Sfcs) are in close contact with the reproductive cells, tissues, organs, and other molecules of both males and females during reproduction. Moreover, their production and use are adjusted in response to environmental conditions, making them potential markers of environmentally- and developmentally-induced paternal effects on the next generation(s). Although there is some intriguing evidence for Sfc-mediated paternal effects, the underlying molecular mechanisms remain poorly defined. In this review, the current evidence regarding the links between seminal fluid and environmental paternal effects and the potential pathways and mechanisms that seminal fluid may follow in mediating paternal epigenetic inheritance are discussed.
Collapse
Affiliation(s)
- Bahar Patlar
- Animal Ecology, Department of Zoology, Martin-Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
6
|
Nakadera Y, Thornton Smith A, Daupagne L, Coutellec MA, Koene JM, Ramm SA. Divergence of seminal fluid gene expression and function among natural snail populations. J Evol Biol 2020; 33:1440-1451. [PMID: 32697880 DOI: 10.1111/jeb.13683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/29/2022]
Abstract
Seminal fluid proteins (SFPs) can trigger drastic changes in mating partners, mediating post-mating sexual selection and associated sexual conflict. Also, cross-species comparisons have demonstrated that SFPs evolve rapidly and hint that post-mating sexual selection drives their rapid evolution. In principle, this pattern should be detectable within species as rapid among-population divergence in SFP expression and function. However, given the multiple other factors that could vary among populations, isolating divergence in SFP-mediated effects is not straightforward. Here, we attempted to address this gap by combining the power of a common garden design with functional assays involving artificial injection of SFPs in the simultaneously hermaphroditic freshwater snail, Lymnaea stagnalis. We detected among-population divergence in SFP gene expression, suggesting that seminal fluid composition differs among four populations collected in Western Europe. Furthermore, by artificially injecting seminal fluid extracted from these field-derived snails into standardized mating partners, we also detected among-population divergence in the strength of post-mating effects induced by seminal fluid. Both egg production and subsequent sperm transfer of partners differed depending on the population origin of seminal fluid, with the response in egg production seemingly closely corresponding to among-population divergence in SFP gene expression. Our results thus lend strong intraspecific support to the notion that SFP expression and function evolve rapidly, and confirm L. stagnalis as an amenable system for studying processes driving SFP evolution.
Collapse
Affiliation(s)
- Yumi Nakadera
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Léa Daupagne
- Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Joris M Koene
- Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Steven A Ramm
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Mebane CA, Sumpter JP, Fairbrother A, Augspurger TP, Canfield TJ, Goodfellow WL, Guiney PD, LeHuray A, Maltby L, Mayfield DB, McLaughlin MJ, Ortego LS, Schlekat T, Scroggins RP, Verslycke TA. Scientific integrity issues in Environmental Toxicology and Chemistry: Improving research reproducibility, credibility, and transparency. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:320-344. [PMID: 30609273 PMCID: PMC7313240 DOI: 10.1002/ieam.4119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/26/2018] [Accepted: 12/26/2018] [Indexed: 05/23/2023]
Abstract
High-profile reports of detrimental scientific practices leading to retractions in the scientific literature contribute to lack of trust in scientific experts. Although the bulk of these have been in the literature of other disciplines, environmental toxicology and chemistry are not free from problems. While we believe that egregious misconduct such as fraud, fabrication of data, or plagiarism is rare, scientific integrity is much broader than the absence of misconduct. We are more concerned with more commonly encountered and nuanced issues such as poor reliability and bias. We review a range of topics including conflicts of interests, competing interests, some particularly challenging situations, reproducibility, bias, and other attributes of ecotoxicological studies that enhance or detract from scientific credibility. Our vision of scientific integrity encourages a self-correcting culture that promotes scientific rigor, relevant reproducible research, transparency in competing interests, methods and results, and education. Integr Environ Assess Manag 2019;00:000-000. © 2019 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Anne LeHuray
- Chemical Management Associates, Alexandria, Virginia, USA
| | | | | | | | - Lisa S Ortego
- Bayer CropScience, Research Triangle Park, North Carolina, USA
| | - Tamar Schlekat
- Society of Environmental Toxicology and Chemistry, Pensacola, Florida, USA
| | | | | |
Collapse
|
8
|
Koene JM. Sex determination and gender expression: Reproductive investment in snails. Mol Reprod Dev 2017; 84:132-143. [PMID: 27245260 PMCID: PMC6220956 DOI: 10.1002/mrd.22662] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/22/2016] [Indexed: 02/01/2023]
Abstract
Sex determination is generally seen as an issue of importance for separate-sexed organisms; however, when considering other sexual systems, such as hermaphroditism, sex allocation is a less-binary form of sex determination. As illustrated here, with examples from molluscs, this different vantage point can offer important evolutionary insights. After all, males and females produce only one type of gamete, whereas hermaphrodites produce both. In addition, sperm and accessory gland products are donated bidirectionally. For reciprocal mating, this is obvious since sperm are exchanged within one mating interaction; but even unilaterally mating species end up mating in both sexual roles, albeit not simultaneously. With this in mind, I highlight two factors that play an important role in how reproductive investment is divided in snails: First, the individual's motivation to preferentially donate rather than receive sperm (or vice versa) leads to flexible behavioral performance, and thereby investment, of either sex. Second, due to the presence of both sexual roles within the same individual, partners are potentially able to influence investment in both sexual functions of their partner to their own benefit. The latter has already led to novel insights into how accessory gland products may evolve. Moreover, the current evidence points towards different ways in which allocation to reproduction can be changed in simultaneous hermaphrodites. These often differ from the separate-sexed situation, highlighting that comparison across different sexual systems may help identify commonalities and differences in physiological, and molecular mechanisms as well as evolutionary patterns. Mol. Reprod. Dev. 84: 132-143, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Joris M. Koene
- Faculty of Earth and Life SciencesDepartment of Ecological ScienceVrije UniversiteitAmsterdamThe Netherlands
- Terrestrial ZoologyNaturalis Biodiversity CentreLeidenThe Netherlands
| |
Collapse
|