1
|
Cheng W, Xiang L, Adeel K, Zhang J, Sun Y, Zhang Z, Li J. Ultrasensitive fluorescent detection of telomerase activity based on tetrahedral DNA nanostructures as carriers for DNA-templated silver nanoclusters. Anal Bioanal Chem 2022; 414:2431-2438. [PMID: 35037986 DOI: 10.1007/s00216-022-03883-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/27/2021] [Accepted: 01/06/2022] [Indexed: 12/17/2022]
Abstract
Precise evaluation of telomerase activity is essential for the clinical diagnosis of early tumors. Herein, we have ingeniously designed a tetrahedral DNA nanostructure, with hairpin-shaped DNA probes rich in cytosine bases at four vertices for telomerase detection. The DNA-templated silver nanoclusters can be formed after the addition of Ag. Then the introduction of telomerase adds the single-strand TTAGGG extension, which can "turn on" the fluorescence of silver nanoclusters quickly by the proximity of the resulting guanine-rich sequences to silver nanoclusters and realize accurate detection of telomerase activity. In this study, integration of high stability tetrahedral DNA nanostructure and fluorescence signal amplification of four DNA-templated silver nanoclusters offers the advantage of high sensitivity, with a low detection limit of 1 cell. More than that, this method is low-cost, facile, and feasible for practical clinical applications.
Collapse
Affiliation(s)
- Wenting Cheng
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Liangliang Xiang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Khan Adeel
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jianchun Zhang
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Ying Sun
- Department of Clinical Laboratory, Gaochun People's Hospital, Nanjing, 211300, China
| | - Zhaoli Zhang
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China
| | - Jinlong Li
- The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, 210003, China.
| |
Collapse
|
2
|
Tsoukalas D, Buga AM, Docea AO, Sarandi E, Mitrut R, Renieri E, Spandidos DA, Rogoveanu I, Cercelaru L, Niculescu M, Tsatsakis A, Calina D. Reversal of brain aging by targeting telomerase: A nutraceutical approach. Int J Mol Med 2021; 48:199. [PMID: 34515324 PMCID: PMC8448543 DOI: 10.3892/ijmm.2021.5032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/07/2021] [Indexed: 12/17/2022] Open
Abstract
Telomeres, the protective caps of chromosomes, shorten with age, as telomerase, the enzyme responsible for the compensation of telomere erosion, is inactive in the majority of cells. Telomere shortening and subsequent cell senescence lead to tissue aging and age‑related diseases. Neurodegenerative disorders, characterized by the progressive loss of neurons among other hallmarks of aged tissue, and poor cognitive function, have been associated with a short telomere length. Thus, telomerase activity has emerged as a therapeutic target, with novel agents being under investigation. The present study aimed to examine the effects of a novel natural telomerase activator, 'Reverse™', containing Centella asiatica extract, vitamin C, zinc and vitamin D3 on the brains of 18‑month‑old rats. The administration of the 'Reverse™' supplement for 3 months restored telomerase reverse transcriptase (TERT) expression in the brains of rats, as revealed by ELISA and immunohistochemistry. In addition, the findings from PCR‑ELISA demonstrated an enhanced telomerase activity in the cerebellum and cortex cells in the brains of rats treated with the 'Reverse™' supplement. The histopathological findings confirmed a structural reversibility effect close to the differentiation observed in the young control group of rats treated with two capsules/kg body weight of the 'Reverse™' supplement. On the whole, the findings of the present study provide a strong indication that an increased telomerase activity and TERT expression may be achieved not only in the postnatal or embryonic period, but also in the brains of middle‑aged rats through nutraceutical supplementation. The use of the 'Reverse™' supplement may thus contribute to the potential alleviation of a number of central nervous system diseases.
Collapse
Affiliation(s)
- Dimitris Tsoukalas
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- European Institute of Nutritional Medicine (E.I.Nu.M.), I-00198 Rome, Italy
| | - Ana Maria Buga
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Evangelia Sarandi
- Metabolomic Medicine, Health Clinic for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Radu Mitrut
- Department of Cardiology, University and Emergency Hospital, 050098 Bucharest, Romania
| | - Elisavet Renieri
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Ion Rogoveanu
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Liliana Cercelaru
- Department of Anatomy and Embryology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Mihaela Niculescu
- Department of Anatomy and Embryology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Aristidis Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
3
|
Expression of functional alternative telomerase RNA component gene in mouse brain and in motor neurons cells protects from oxidative stress. Oncotarget 2018; 7:78297-78309. [PMID: 27823970 PMCID: PMC5346639 DOI: 10.18632/oncotarget.13049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022] Open
Abstract
Telomerase, a ribonucleoprotein, is highly expressed and active in many tumor cells and types, therefore it is considered to be a target for anti-cancer agents. On the other hand, recent studies demonstrated that activation of telomerase is a potential therapeutic target for age related diseases. Telomerase mainly consists of a catalytic protein subunit with a reverse transcription activity (TERT) and an RNA component (TERC), a long non-coding RNA, which serves as a template for the re-elongation of telomeres by TERT. We previously showed that TERT is highly expressed in distinct neuronal cells of the mouse brain and its expression declined with age. To understand the role of telomerase in non-mitotic, fully differentiated cells such neurons we here examined the expression of the other component, TERC, in mouse brain. Surprisingly, by first using bioinformatics analysis, we identified an alternative TERC gene (alTERC) in the mouse genome. Using further experimental approaches we described the presence of a functional alTERC in the mouse brain and spleen, in cultures of motor neurons- like cells and neuroblastoma tumor cells. The alTERC is similar (87%) to mouse TERC (mTERC) with a deletion of 18 bp in the TERC conserved region 4 (CR4). This alTERC gene is expressed and its product interacts with the endogenous mTERT protein and with an exogenous human TERT protein (hTERT) to form an active enzyme. Overexpression of the alTERC and the mTERC genes, in mouse motor neurons like cells, increased the activity of TERT without affecting its protein level. Under oxidative stress conditions, alTERC significantly increased the survival of motor neurons cells without altering the level of TERT protein or its activity. The results suggest that the expression of the alTERC gene in the mouse brain provides an additional way for regulating telomerase activity under normal and stress conditions and confers protection to neuronal cells from oxidative stress.
Collapse
|