1
|
Aguilera A, Klemenčič M, Sueldo DJ, Rzymski P, Giannuzzi L, Martin MV. Cell Death in Cyanobacteria: Current Understanding and Recommendations for a Consensus on Its Nomenclature. Front Microbiol 2021; 12:631654. [PMID: 33746925 PMCID: PMC7965980 DOI: 10.3389/fmicb.2021.631654] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023] Open
Abstract
Cyanobacteria are globally widespread photosynthetic prokaryotes and are major contributors to global biogeochemical cycles. One of the most critical processes determining cyanobacterial eco-physiology is cellular death. Evidence supports the existence of controlled cellular demise in cyanobacteria, and various forms of cell death have been described as a response to biotic and abiotic stresses. However, cell death research in this phylogenetic group is a relatively young field and understanding of the underlying mechanisms and molecular machinery underpinning this fundamental process remains largely elusive. Furthermore, no systematic classification of modes of cell death has yet been established for cyanobacteria. In this work, we analyzed the state of knowledge in the field of cyanobacterial cell death. Based on that, we propose unified criterion for the definition of accidental, regulated, and programmed forms of cell death in cyanobacteria based on molecular, biochemical, and morphologic aspects following the directions of the Nomenclature Committee on Cell Death (NCCD). With this, we aim to provide a guide to standardize the nomenclature related to this topic in a precise and consistent manner, which will facilitate further ecological, evolutionary, and applied research in the field of cyanobacterial cell death.
Collapse
Affiliation(s)
- Anabella Aguilera
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Marina Klemenčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Daniela J. Sueldo
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan´, Poland
- Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznan´, Poland
| | - Leda Giannuzzi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Universidad Nacional de La Plata, La Plata, Argentina
- Área de Toxicología General, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Victoria Martin
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (CIB-FIBA), Mar del Plata, Argentina
| |
Collapse
|
2
|
Foo SC, Chapman IJ, Hartnell DM, Turner AD, Franklin DJ. Effects of H 2O 2 on growth, metabolic activity and membrane integrity in three strains of Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:38916-38927. [PMID: 32638304 DOI: 10.1007/s11356-020-09729-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The application of hydrogen peroxide (H2O2) as a management tool to control Microcystis blooms has become increasingly popular due to its short lifetime and targeted action. H2O2 increases intracellular reactive oxygen species resulting in oxidative stress and subsequently cell death. H2O2 is naturally produced in freshwater bodies as a result of photocatalytic reactions between dissolved organic carbon and sunlight. Previously, some studies have suggested that this environmental source of H2O2 selectively targets for toxigenic cyanobacteria strains in the genus Microcystis. Also, past studies only focused on the morphological and biochemical changes of H2O2-induced cell death in Microcystis with little information available on the effects of different H2O2 concentrations on growth, esterase activity and membrane integrity. Therefore, this study investigated the effects of non-lethal (40-4000 nM) concentrations on percentage cell death; with a focus on sub-lethal (50 μM) and lethal (275 μM; 500 μM) doses of H2O2 on growth, cells showing esterase activity and membrane integrity. The non-lethal dose experiment was part of a preliminary study. Results showed a dose- and time-dependent relationship in all three Microcystis strains post H2O2 treatment. H2O2 resulted in a significant increase in intracellular reactive oxygen species, decreased chlorophyll a content, decreased growth rate and esterase activity. Interestingly, at sub-lethal (50 μM H2O2 treatment), percentage of dead cells in microcystin-producing strains was significantly higher (p < 0.05) than that in non-microcystin-producing strains at 72 h. These findings further cement our understanding of the influence of H2O2 on different strains of Microcystis and its impact on membrane integrity and metabolic physiology: important to future toxic bloom control programmes.
Collapse
Affiliation(s)
- Su Chern Foo
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK.
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Ian J Chapman
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- New South Wales Shellfish Program, NSW Food Authority, Taree, NSW, 2430, Australia
| | - David M Hartnell
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Andrew D Turner
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), The Nothe, Barrack Road, Weymouth, Dorset, DT4 8UB, UK
| | - Daniel J Franklin
- Department of Life & Environmental Sciences, Faculty of Science & Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|