1
|
Hellmeier J, Platzer R, Mühlgrabner V, Schneider MC, Kurz E, Schütz GJ, Huppa JB, Sevcsik E. Strategies for the Site-Specific Decoration of DNA Origami Nanostructures with Functionally Intact Proteins. ACS NANO 2021; 15:15057-15068. [PMID: 34463486 PMCID: PMC8482763 DOI: 10.1021/acsnano.1c05411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/26/2021] [Indexed: 05/14/2023]
Abstract
DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry, and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as the protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to three proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral peptide nucleic acid (PNA) in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications.
Collapse
Affiliation(s)
| | - René Platzer
- Center
for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University
of Vienna, Vienna, 1090, Austria
| | - Vanessa Mühlgrabner
- Center
for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University
of Vienna, Vienna, 1090, Austria
| | | | - Elke Kurz
- Kennedy
Institute of Rheumatology, University of
Oxford, Oxford, OX3 7FY, U.K.
| | | | - Johannes B. Huppa
- Center
for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University
of Vienna, Vienna, 1090, Austria
| | - Eva Sevcsik
- Institute
of Applied Physics, TU Wien, Vienna, 1060, Austria
| |
Collapse
|
2
|
Hellmeier J, Platzer R, Eklund AS, Schlichthaerle T, Karner A, Motsch V, Schneider MC, Kurz E, Bamieh V, Brameshuber M, Preiner J, Jungmann R, Stockinger H, Schütz GJ, Huppa JB, Sevcsik E. DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens. Proc Natl Acad Sci U S A 2021; 118:e2016857118. [PMID: 33468643 PMCID: PMC7848602 DOI: 10.1073/pnas.2016857118] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
T cells detect with their T cell antigen receptors (TCRs) the presence of rare agonist peptide/MHC complexes (pMHCs) on the surface of antigen-presenting cells (APCs). How extracellular ligand binding triggers intracellular signaling is poorly understood, yet spatial antigen arrangement on the APC surface has been suggested to be a critical factor. To examine this, we engineered a biomimetic interface based on laterally mobile functionalized DNA origami platforms, which allow for nanoscale control over ligand distances without interfering with the cell-intrinsic dynamics of receptor clustering. When targeting TCRs via stably binding monovalent antibody fragments, we found the minimum signaling unit promoting efficient T cell activation to consist of two antibody-ligated TCRs within a distance of 20 nm. In contrast, transiently engaging antigenic pMHCs stimulated T cells robustly as well-isolated entities. These results identify pairs of antibody-bound TCRs as minimal receptor entities for effective TCR triggering yet validate the exceptional stimulatory potency of single isolated pMHC molecules.
Collapse
Affiliation(s)
| | - Rene Platzer
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexandra S Eklund
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Thomas Schlichthaerle
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | | | | | - Elke Kurz
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Victor Bamieh
- Institute of Applied Physics, TU Wien, 1040 Vienna, Austria
| | | | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80539 Munich, Germany
| | - Hannes Stockinger
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Johannes B Huppa
- Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Eva Sevcsik
- Institute of Applied Physics, TU Wien, 1040 Vienna, Austria;
| |
Collapse
|
3
|
Förster Resonance Energy Transfer to Study TCR-pMHC Interactions in the Immunological Synapse. Methods Mol Biol 2018; 1584:207-229. [PMID: 28255705 DOI: 10.1007/978-1-4939-6881-7_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
T-cell antigen recognition is remarkably efficient: when scanning the surface of antigen-presenting cells (APCs), T-cells can detect the presence of just a few single antigenic peptide/MHCs (pMHCs), which are often vastly outnumbered by structurally similar non-stimulatory endogenous pMHCs (Irvine et al., Nature 419(6909):845-849, 2002; Purbhoo et al., Nat Immunol 5(5):524-530, 2004; Huang et al., Immunity 39(5):846-857, 2013). How T-cells achieve this is still enigmatic, in particular in view of the rather moderate affinity that TCRs typically exert for antigenic pMHCs, at least when measured in vitro (Davis et al., Ann Rev Immunol 16:523-544, 1998). To shed light on this in a comprehensive manner, we have developed a microscopy-based assay, which allows us to quantitate TCR-pMHC interactions in situ, i.e., within the special confines of the nascent immunological synapse of a T-cell contacting a planar-supported lipid bilayer functionalized with the costimulatory molecule B7-1, the adhesion molecule ICAM-1, and pMHCs (Huppa et al., Nature 463(7283):963-967, 2010) (Fig. 1). Binding measurements are based on Förster resonance energy transfer (FRET) between site-specifically labeled pMHCs and TCRs, which are decorated with recombinant site-specifically labeled single-chain antibody fragments (scFV) derived from the TCRβ-reactive H57-597 antibody (Huppa et al., Nature 463(7283):963-967, 2010). FRET, a quantum-mechanical phenomenon, involves the non-radiative coupling of dipole moments of two adjacent fluorophores, a donor molecule and an acceptor molecule. FRET efficiency is inversely proportional to the sixth power of the inter-dye distance. Hence, it can be employed as a molecular ruler (Stryer and Haugland, Proc Natl Acad Sci, USA 58(2):719-726, 1967) or, as is the case here, to score for interactions of appropriately labeled molecules. To facilitate both quantitative and single-molecule readout, it is important to conjugate donor and acceptor dyes in a site-specific manner.While SLBs mimic some but certainly not all properties of a plasma membrane of a living cell, their use features a number of operational advantages: SLBs can be prepared in a fluid state, thereby facilitating the spatial rearrangements that accompany the formation of an immunological synapse (Grakoui et al., Science 285(5425):221-227, 1999). The imaging of a three-dimensional binding process is reduced to two dimensions, which saves time and fluorophore-emitted photons and allows for fast measurements. Furthermore, images can be acquired in noise-attenuated total internal reflection (TIR) mode, so far a necessity for single-molecule detection within the immunological synapse. Importantly, the stimulatory potency of pMHCs is very well preserved compared to cell surface-embedded pMHCs. Hence, while in principle artificial, SLBs are still a good approximation of the physiologic scenario a T-cell encounters when approaching an APC. Vice versa, the reconstitutive approach offers unique opportunities to interrogate the influence of accessory molecules on T-cell antigen recognition in a highly quantitative manner.In this chapter we will provide recommendations for the production of proteins used for SLB decoration as well as hands-on protocols for the production of SLBs. We will describe in detail how to perform and analyze FRET-based experiments to determine synaptic binding constants. In the "Notes" section, we will provide some information regarding the microscope setup as well as the mathematical and biophysical foundation underlying data analysis.
Collapse
|
4
|
Shen C, Xu T, Wu Y, Li X, Xia L, Wang W, Shahzad KA, Zhang L, Wan X, Qiu J. Frequency and reactivity of antigen-specific T cells were concurrently measured through the combination of artificial antigen-presenting cell, MACS and ELISPOT. Sci Rep 2017; 7:16400. [PMID: 29180767 PMCID: PMC5703716 DOI: 10.1038/s41598-017-16549-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/14/2017] [Indexed: 01/24/2023] Open
Abstract
Conventional peptide-major histocompatibility complex (pMHC) multimer staining, intracellular cytokine staining, and enzyme-linked immunospot (ELISPOT) assay cannot concurrently determine the frequency and reactivity of antigen-specific T cells (AST) in a single assay. In this report, pMHC multimer, magnetic-activated cell sorting (MACS), and ELISPOT techniques have been integrated into a micro well by coupling pMHC multimers onto cell-sized magnetic beads to characterize AST cell populations in a 96-well microplate which pre-coated with cytokine-capture antibodies. This method, termed AAPC-microplate, allows the enumeration and local cytokine production of AST cells in a single assay without using flow cytometry or fluorescence intensity scanning, thus will be widely applicable. Here, ovalbumin257-264-specific CD8+ T cells from OT-1 T cell receptor (TCR) transgenic mice were measured. The methodological accuracy, specificity, reproducibility, and sensitivity in enumerating AST cells compared well with conventional pMHC multimer staining. Furthermore, the AAPC-microplate was applied to detect the frequency and reactivity of Hepatitis B virus (HBV) core antigen18-27- and surface antigen183-191-specific CD8+ T cells for the patients, and was compared with conventional method. This method without the need of high-end instruments may facilitate the routine analysis of patient-specific cellular immune response pattern to a given antigen in translational studies.
Collapse
Affiliation(s)
- Chuanlai Shen
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China.
| | - Tao Xu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - You Wu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xiaoe Li
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lingzhi Xia
- Department of Laboratory Medicine, Nanjing KingMed Diagnostics Company Limited, Nanjing, Jiangsu, China
| | - Wei Wang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, Jiangsu, China
| | - Jie Qiu
- Division of Infectious Diseases, Second Hospital of Nanjing, Affiliated Second Hospital of Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Abstract
In the course of a single decade single molecule microscopy has changed from being a secluded domain shared merely by physicists with a strong background in optics and laser physics to a discipline that is now enjoying vivid attention by life-scientists of all venues (1). This is because single molecule imaging has the unique potential to reveal protein behavior in situ in living cells and uncover cellular organization with unprecedented resolution below the diffraction limit of visible light (2). Glass-supported planar lipid bilayers (SLBs) are a powerful tool to bring cells otherwise growing in suspension in close enough proximity to the glass slide so that they can be readily imaged in noise-reduced Total Internal Reflection illumination mode (3,4). They are very useful to study the protein dynamics in plasma membrane-associated events as diverse as cell-cell contact formation, endocytosis, exocytosis and immune recognition. Simple procedures are presented how to generate highly mobile protein-functionalized SLBs in a reproducible manner, how to determine protein mobility within and how to measure protein densities with the use of single molecule detection. It is shown how to construct a cost-efficient single molecule microscopy system with TIRF illumination capabilities and how to operate it in the experiment.
Collapse
Affiliation(s)
- Markus Axmann
- Institute of Applied Physics - Biophysics, Vienna University of Technology
| | - Gerhard J Schütz
- Institute of Applied Physics - Biophysics, Vienna University of Technology
| | - Johannes B Huppa
- Institute for Hygiene and Applied Immunology, Immune Recognition Unit, Medical University of Vienna;
| |
Collapse
|