1
|
Rowley AJ, Square TA, Miller CT. Site pleiotropy of a stickleback Bmp6 enhancer. Dev Biol 2022; 492:111-118. [PMID: 36198347 DOI: 10.1016/j.ydbio.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/15/2022]
Abstract
Development and regeneration are orchestrated by gene regulatory networks that operate in part through transcriptional enhancers. Although many enhancers are pleiotropic and are active in multiple tissues, little is known about whether enhancer pleiotropy is due to 1) site pleiotropy, in which individual transcription factor binding sites (TFBS) are required for activity in multiple tissues, or 2) multiple distinct sites that regulate expression in different tissues. Here, we investigated the pleiotropy of an intronic enhancer of the stickleback Bone morphogenetic protein 6 (Bmp6) gene. This enhancer was previously shown to regulate evolved changes in tooth number and tooth regeneration, and is highly pleiotropic, with robust activity in both fins and teeth throughout embryonic, larval, and adult life, and in the heart and kidney in adult fish. We tested the hypothesis that the pleiotropy of this enhancer is due to site pleiotropy of an evolutionarily conserved predicted Foxc1 TFBS. Transgenic analysis and site-directed mutagenesis experiments both deleting and scrambling this predicted Foxc1 TFBS revealed that the binding site is required for enhancer activity in both teeth and fins throughout embryonic, larval, and adult development, and in the heart and kidney in adult fish. Collectively these data support a model where the pleiotropy of this Bmp6 enhancer is due to site pleiotropy and this putative binding site is required for enhancer activity in multiple anatomical sites from the embryo to the adult.
Collapse
Affiliation(s)
- Alyssa J Rowley
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
2
|
Stepaniak MD, Square TA, Miller CT. Evolved Bmp6 enhancer alleles drive spatial shifts in gene expression during tooth development in sticklebacks. Genetics 2021; 219:6374454. [PMID: 34849839 PMCID: PMC8664583 DOI: 10.1093/genetics/iyab151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in enhancers have been shown to often underlie natural variation but the evolved differences in enhancer activity can be difficult to identify in vivo. Threespine sticklebacks (Gasterosteus aculeatus) are a robust system for studying enhancer evolution due to abundant natural genetic variation, a diversity of evolved phenotypes between ancestral marine and derived freshwater forms, and the tractability of transgenic techniques. Previous work identified a series of polymorphisms within an intronic enhancer of the Bone morphogenetic protein 6 (Bmp6) gene that are associated with evolved tooth gain, a derived increase in freshwater tooth number that arises late in development. Here, we use a bicistronic reporter construct containing a genetic insulator and a pair of reciprocal two-color transgenic reporter lines to compare enhancer activity of marine and freshwater alleles of this enhancer. In older fish, the two alleles drive partially overlapping expression in both mesenchyme and epithelium of developing teeth, but the freshwater enhancer drives a reduced mesenchymal domain and a larger epithelial domain relative to the marine enhancer. In younger fish, these spatial shifts in enhancer activity are less pronounced. Comparing Bmp6 expression by in situ hybridization in developing teeth of marine and freshwater fish reveals similar evolved spatial shifts in gene expression. Together, these data support a model in which the polymorphisms within this enhancer underlie evolved tooth gain by shifting the spatial expression of Bmp6 during tooth development, and provide a general strategy to identify spatial differences in enhancer activity in vivo.
Collapse
Affiliation(s)
- Mark D Stepaniak
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tyler A Square
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
McGaugh SE, Kowalko JE, Duboué E, Lewis P, Franz-Odendaal TA, Rohner N, Gross JB, Keene AC. Dark world rises: The emergence of cavefish as a model for the study of evolution, development, behavior, and disease. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:397-404. [PMID: 32638529 DOI: 10.1002/jez.b.22978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/24/2022]
Abstract
A central question in biology is how naturally occurring genetic variation accounts for morphological and behavioral diversity within a species. The Mexican tetra, Astyanax mexicanus, has been studied for nearly a century as a model for investigating trait evolution. In March of 2019, researchers representing laboratories from around the world met at the Sixth Astyanax International Meeting in Santiago de Querétaro, Mexico. The meeting highlighted the expanding applications of cavefish to investigations of diverse aspects of basic biology, including development, evolution, and disease-based applications. A broad range of integrative approaches are being applied in this system, including the application of state-of-the-art functional genetic assays, brain imaging, and genome sequencing. These advances position cavefish as a model organism for addressing fundamental questions about the genetics and evolution underlying the impressive trait diversity among individual populations within this species.
Collapse
Affiliation(s)
- Suzanne E McGaugh
- Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, Minnesota
| | - Johanna E Kowalko
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Erik Duboué
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida.,Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, Florida
| | - Peter Lewis
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Joshua B Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Alex C Keene
- The Jupiter Life Science Initiative and Program in Neurogenetics, Florida Atlantic University, Jupiter, Florida
| |
Collapse
|
4
|
Ishikawa A, Kitano J. Diversity in reproductive seasonality in the three-spined stickleback, Gasterosteus aculeatus. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb208975. [PMID: 32034046 DOI: 10.1242/jeb.208975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The annual timing of reproduction is a key life history trait with a large effect on fitness. Populations often vary in the timing and duration of reproduction to adapt to different seasonality of ecological and environmental variables between habitats. However, little is known about the molecular genetic mechanisms underlying interpopulation variation in reproductive seasonality. Here, we demonstrate that the three-spined stickleback (Gasterosteus aculeatus) is a good model for molecular genetic analysis of variations in reproductive seasonality. We first compiled data on reproductive seasons of diverse ecotypes, covering marine-anadromous, lake and stream ecotypes, of three-spined stickleback inhabiting a wide range of latitudes. Our analysis showed that both ecotype and latitude significantly contribute to variation in reproductive seasons. Stream ecotypes tend to start breeding earlier and end later than other ecotypes. Populations from lower latitudes tend to start breeding earlier than those from higher latitudes in all three ecotypes. Additionally, stream ecotypes tend to have extended breeding seasons at lower latitudes than at higher latitudes, leading to nearly year-round reproduction in the most southern stream populations. A review of recent progress in our understanding of the physiological mechanisms underlying seasonal reproduction in the three-spined stickleback indicates that photoperiod is an important external cue that stimulates and/or suppresses reproduction in this species. Taking advantage of genomic tools available for this species, the three-spined stickleback will be a good model to investigate what kinds of genes and mutations underlie variations in the physiological signalling pathways that regulate reproduction in response to photoperiod.
Collapse
Affiliation(s)
- Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan .,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
5
|
Kowalko J. Utilizing the blind cavefish Astyanax mexicanus to understand the genetic basis of behavioral evolution. J Exp Biol 2020; 223:223/Suppl_1/jeb208835. [DOI: 10.1242/jeb.208835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT
Colonization of novel habitats often results in the evolution of diverse behaviors. Comparisons between individuals from closely related populations that have evolved divergent behaviors in different environments can be used to investigate behavioral evolution. However, until recently, functionally connecting genotypes to behavioral phenotypes in these evolutionarily relevant organisms has been difficult. The development of gene editing tools will facilitate functional genetic analysis of genotype–phenotype connections in virtually any organism, and has the potential to significantly transform the field of behavioral genetics when applied to ecologically and evolutionarily relevant organisms. The blind cavefish Astyanax mexicanus provides a remarkable example of evolution associated with colonization of a novel habitat. These fish consist of a single species that includes sighted surface fish that inhabit the rivers of Mexico and southern Texas and at least 29 populations of blind cavefish from the Sierra Del Abra and Sierra de Guatemala regions of Northeast Mexico. Although eye loss and albinism have been studied extensively in A. mexicanus, derived behavioral traits including sleep loss, alterations in foraging and reduction in social behaviors are now also being investigated in this species to understand the genetic and neural basis of behavioral evolution. Astyanax mexicanus has emerged as a powerful model system for genotype–phenotype mapping because surface and cavefish are interfertile. Further, the molecular basis of repeated trait evolution can be examined in this species, as multiple cave populations have independently evolved the same traits. A sequenced genome and the implementation of gene editing in A. mexicanus provides a platform for gene discovery and identification of the contributions of naturally occurring variation to behaviors. This review describes the current knowledge of behavioral evolution in A. mexicanus with an emphasis on the molecular and genetic underpinnings of evolved behaviors. Multiple avenues of new research that can be pursued using gene editing tools are identified, and how these will enhance our understanding of behavioral evolution is discussed.
Collapse
Affiliation(s)
- Johanna Kowalko
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
- Program of Neurogenetics, Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
6
|
Wucherpfennig JI, Miller CT, Kingsley DM. Efficient CRISPR-Cas9 editing of major evolutionary loci in sticklebacks. EVOLUTIONARY ECOLOGY RESEARCH 2019; 20:107-132. [PMID: 34899072 PMCID: PMC8664273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Stickleback fish are widely used to study the genetic and ecological basis of phenotypic evolution. Although several major loci have now been identified that contribute to evolutionary differences between wild populations, further study of the phenotypes associated with particular genes and mutations has been limited by the difficulty of generating targeted mutations at precise locations in the stickleback genome. APPROACH AND AIMS We compared different methods of expressing single-guide RNAs (sgRNAs) and Cas9 activity in fertilized stickleback eggs. We used an easily scored pigmentation gene (SLC24A5) to screen for molecular lesions, phenotypic effects, and possible germline transmission of newly induced alleles. We then used the optimized CRISPR methods to target two major evolutionary loci in sticklebacks, KITLG and EDA. We hypothesized that coding region mutations in the KITLG gene would alter body pigmentation and possibly sex determination, and that mutations in the EDA gene would disrupt the formation of most armor plates, fin rays, spines, teeth, and gill rakers. RESULTS Targeted deletions were successfully induced at each target locus by co-injecting one-cell stage stickleback embryos with either Cas9 mRNA or Cas9 protein, together with sgRNAs designed to protein-coding exons. Founder animals were typically mosaic for multiple mutations, which they transmitted through the germline at overall rates of 21 to 100%. We found that the copy of KITLG on the X chromosome (KITLGX) has diverged from the KITLG on the Y chromosome (KITLGY). Predicted loss-of-function mutations in the KITLGX gene dramatically altered pigmentation in both external skin and internal organ, but the same was not true for KITLGY mutations. Predicted loss-of-function mutations in either the KITLGX or KITLGY genes did not lead to sex reversal or prevent fertility. Homozygous loss-of-function mutations in the EDA gene led to complete loss of armor plates, severe reduction or loss of most soft rays in the dorsal, anal, and caudal fins, and severe reductions in tooth and gill raker number. In contrast, long dorsal and pelvic spines remained intact in EDA mutant animals, suggesting that common co-segregation of plate loss and spine reduction in wild populations is unlikely to be due to pleiotropic effects of EDA mutations. CONCLUSION CRISPR-Cas9 approaches can be used to induce germline mutations in key evolutionary loci in sticklebacks. Targeted coding region mutations confirm an important role for KITLG and EDA in skin pigmentation and armor plate reduction, respectively. They also provide new information about the functions of these genes in other body structures.
Collapse
Affiliation(s)
- Julia I Wucherpfennig
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| | - Craig T Miller
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720, USA
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305-5329, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5329, USA
| |
Collapse
|
7
|
Elaswad A, Khalil K, Ye Z, Liu Z, Liu S, Peatman E, Odin R, Vo K, Drescher D, Gosh K, Qin G, Bugg W, Backenstose N, Dunham R. Effects of CRISPR/Cas9 dosage on TICAM1 and RBL gene mutation rate, embryonic development, hatchability and fry survival in channel catfish. Sci Rep 2018; 8:16499. [PMID: 30405210 PMCID: PMC6220201 DOI: 10.1038/s41598-018-34738-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 10/08/2018] [Indexed: 12/20/2022] Open
Abstract
The current study was conducted to assess the effects of microinjection of different dosages of guide RNA (gRNA)/Cas9 protein on the mutation rate, embryo survival, embryonic development, hatchability and early fry survival in channel catfish, Ictalurus punctatus. Guide RNAs targeting two of the channel catfish immune-related genes, toll/interleukin 1 receptor domain-containing adapter molecule (TICAM 1) and rhamnose binding lectin (RBL) genes, were designed and prepared. Three dosages of gRNA/Cas9 protein (low, 2.5 ng gRNA/7.5 ng Cas9, medium, 5 ng gRNA/15 ng Cas9 and high, 7.5 ng gRNA/22.5 ng Cas9) were microinjected into the yolk of one-cell embryos. Mutation rate increased with higher dosages (p < 0.05). Higher dosages increased the mutation frequency in individual embryos where biallelic mutations were detected. For both genes, microinjection procedures increased the embryo mortality (p < 0.05). Increasing the dosage of gRNA/Cas9 protein increased the embryo mortality and reduced the hatching percent (p < 0.05). Embryonic development was delayed when gRNAs targeting RBL gene were injected. Means of fry survival time were similar for different dosages (p > 0.05). The current results lay the foundations for designing gene editing experiments in channel catfish and can be used as a guide for other fish species.
Collapse
Affiliation(s)
- Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.
| | - Zhanjiang Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,College of Arts and Science, Syracuse University, New York, 13244, USA
| | - Shikai Liu
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,College of Fisheries, Ocean University of China, Qingdao, Shandong, 266003, China
| | - Eric Peatman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,Mindanao State University, Maguindanao, 9601, Philippines
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA
| | - David Drescher
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,Department of Agriculture, University of Maryland, College park, Maryland, 20742, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,Department of Aquaculture and Fisheries, University of Arkansas, Pine Bluff, Arkansas, 71601, USA
| | - Guyu Qin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA
| | - William Bugg
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Nathan Backenstose
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA.,Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, 14228, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Alabama, 36849, USA
| |
Collapse
|
8
|
Genetic Dissection of a Supergene Implicates Tfap2a in Craniofacial Evolution of Threespine Sticklebacks. Genetics 2018; 209:591-605. [PMID: 29593029 DOI: 10.1534/genetics.118.300760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 02/07/2023] Open
Abstract
In nature, multiple adaptive phenotypes often coevolve and can be controlled by tightly linked genetic loci known as supergenes. Dissecting the genetic basis of these linked phenotypes is a major challenge in evolutionary genetics. Multiple freshwater populations of threespine stickleback fish (Gasterosteus aculeatus) have convergently evolved two constructive craniofacial traits, longer branchial bones and increased pharyngeal tooth number, likely as adaptations to dietary differences between marine and freshwater environments. Prior QTL mapping showed that both traits are partially controlled by overlapping genomic regions on chromosome 21 and that a regulatory change in Bmp6 likely underlies the tooth number QTL. Here, we mapped the branchial bone length QTL to a 155 kb, eight-gene interval tightly linked to, but excluding the coding regions of Bmp6 and containing the candidate gene Tfap2a Further recombinant mapping revealed this bone length QTL is separable into at least two loci. During embryonic and larval development, Tfap2a was expressed in the branchial bone primordia, where allele specific expression assays revealed the freshwater allele of Tfap2a was expressed at lower levels relative to the marine allele in hybrid fish. Induced loss-of-function mutations in Tfap2a revealed an essential role in stickleback craniofacial development and show that bone length is sensitive to Tfap2a dosage in heterozygotes. Combined, these results suggest that closely linked but genetically separable changes in Bmp6 and Tfap2a contribute to a supergene underlying evolved skeletal gain in multiple freshwater stickleback populations.
Collapse
|
9
|
Elaswad A, Khalil K, Cline D, Page-McCaw P, Chen W, Michel M, Cone R, Dunham R. Microinjection of CRISPR/Cas9 Protein into Channel Catfish, Ictalurus punctatus, Embryos for Gene Editing. J Vis Exp 2018. [PMID: 29443028 DOI: 10.3791/56275] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The complete genome of the channel catfish, Ictalurus punctatus, has been sequenced, leading to greater opportunities for studying channel catfish gene function. Gene knockout has been used to study these gene functions in vivo. The clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9) system is a powerful tool used to edit genomic DNA sequences to alter gene function. While the traditional approach has been to introduce CRISPR/Cas9 mRNA into the single cell embryos through microinjection, this can be a slow and inefficient process in catfish. Here, a detailed protocol for microinjection of channel catfish embryos with CRISPR/Cas9 protein is described. Briefly, eggs and sperm were collected and then artificial fertilization performed. Fertilized eggs were transferred to a Petri dish containing Holtfreter's solution. Injection volume was calibrated and then guide RNAs/Cas9 targeting the toll/interleukin 1 receptor domain-containing adapter molecule (TICAM 1) gene and rhamnose binding lectin (RBL) gene were microinjected into the yolk of one-cell embryos. The gene knockout was successful as indels were confirmed by DNA sequencing. The predicted protein sequence alterations due to these mutations included frameshift and truncated protein due to premature stop codons.
Collapse
Affiliation(s)
- Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University; Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University;
| | - Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University; Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University
| | - David Cline
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| | - Patrick Page-McCaw
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University
| | | | - Roger Cone
- Life Science Institute, University of Michigan
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University
| |
Collapse
|
10
|
Peichel CL, Marques DA. The genetic and molecular architecture of phenotypic diversity in sticklebacks. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2015.0486. [PMID: 27994127 DOI: 10.1098/rstb.2015.0486] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
Abstract
A major goal of evolutionary biology is to identify the genotypes and phenotypes that underlie adaptation to divergent environments. Stickleback fish, including the threespine stickleback (Gasterosteus aculeatus) and the ninespine stickleback (Pungitius pungitius), have been at the forefront of research to uncover the genetic and molecular architecture that underlies phenotypic diversity and adaptation. A wealth of quantitative trait locus (QTL) mapping studies in sticklebacks have provided insight into long-standing questions about the distribution of effect sizes during adaptation as well as the role of genetic linkage in facilitating adaptation. These QTL mapping studies have also provided a basis for the identification of the genes that underlie phenotypic diversity. These data have revealed that mutations in regulatory elements play an important role in the evolution of phenotypic diversity in sticklebacks. Genetic and molecular studies in sticklebacks have also led to new insights on the genetic basis of repeated evolution and suggest that the same loci are involved about half of the time when the same phenotypes evolve independently. When the same locus is involved, selection on standing variation and repeated mutation of the same genes have both contributed to the evolution of similar phenotypes in independent populations.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Catherine L Peichel
- Divisions of Basic Sciences and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - David A Marques
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.,Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute for Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| |
Collapse
|
11
|
Sequence-Based Mapping and Genome Editing Reveal Mutations in Stickleback Hps5 Cause Oculocutaneous Albinism and the casper Phenotype. G3-GENES GENOMES GENETICS 2017; 7:3123-3131. [PMID: 28739598 PMCID: PMC5592937 DOI: 10.1534/g3.117.1125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we present and characterize the spontaneous X-linked recessive mutation casper, which causes oculocutaneous albinism in threespine sticklebacks (Gasterosteus aculeatus). In humans, Hermansky-Pudlak syndrome results in pigmentation defects due to disrupted formation of the melanin-containing lysosomal-related organelle (LRO), the melanosome. casper mutants display not only reduced pigmentation of melanosomes in melanophores, but also reductions in the iridescent silver color from iridophores, while the yellow pigmentation from xanthophores appears unaffected. We mapped casper using high-throughput sequencing of genomic DNA from bulked casper mutants to a region of the stickleback X chromosome (chromosome 19) near the stickleback ortholog of Hermansky-Pudlak syndrome 5 (Hps5). casper mutants have an insertion of a single nucleotide in the sixth exon of Hps5, predicted to generate an early frameshift. Genome editing using CRISPR/Cas9 induced lesions in Hps5 and phenocopied the casper mutation. Injecting single or paired Hps5 guide RNAs revealed higher incidences of genomic deletions from paired guide RNAs compared to single gRNAs. Stickleback Hps5 provides a genetic system where a hemizygous locus in XY males and a diploid locus in XX females can be used to generate an easily scored visible phenotype, facilitating quantitative studies of different genome editing approaches. Lastly, we show the ability to better visualize patterns of fluorescent transgenic reporters in Hps5 mutant fish. Thus, Hps5 mutations present an opportunity to study pigmented LROs in the emerging stickleback model system, as well as a tool to aid in assaying genome editing and visualizing enhancer activity in transgenic fish.
Collapse
|
12
|
Murakami Y, Ansai S, Yonemura A, Kinoshita M. An efficient system for homology-dependent targeted gene integration in medaka ( Oryzias latipes). ZOOLOGICAL LETTERS 2017; 3:10. [PMID: 28694996 PMCID: PMC5500998 DOI: 10.1186/s40851-017-0071-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 06/01/2023]
Abstract
BACKGROUND The CRISPR/Cas system is a powerful genome editing tool that enables targeted genome modifications in various organisms. In medaka (Oryzias latipes), targeted mutagenesis with small insertions and deletions using this system have become a robust technique and are now widely used. However, to date there have been only a small number of reports on targeted gene integration using this system. We thus sought in the present study to identify factors that enhance the efficiency of targeted gene integration events in medaka. RESULTS We show that longer homology arms (ca. 500 bp) and linearization of circular donor plasmids by cleavage with bait sequences enhances the efficiency of targeted integration of plasmids in embryos. A new bait sequence, BaitD, which we designed and selected by in silico screening, achieved the highest efficiency of the targeted gene integration in vivo. Using this system, donor plasmids integrated precisely at target sites and were efficiently transmitted to progeny. We also report that the genotype of F2 siblings, obtained by mating of individuals harboring two different colors of fluorescent protein genes (e.g. GFP and RFP) in the same locus, can be easily and rapidly determined non-invasively by visual observations alone. CONCLUSION We report that the efficiency of targeted gene integration can be enhanced by using donor vectors with longer homologous arms and linearization using a highly active bait system in medaka. These findings may contribute to the establishment of more efficient systems for targeted gene integration in medaka and other fish species.
Collapse
Affiliation(s)
- Yu Murakami
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Satoshi Ansai
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
- Present address: Division of Ecological Genetics, Department of Population Genetics, National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540 Japan
| | - Akari Yonemura
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Masato Kinoshita
- Division of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502 Japan
| |
Collapse
|