1
|
Ma C, Duan X, Lei X. 3D cell culture model: From ground experiment to microgravity study. Front Bioeng Biotechnol 2023; 11:1136583. [PMID: 37034251 PMCID: PMC10080128 DOI: 10.3389/fbioe.2023.1136583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Microgravity has been shown to induce many changes in cell growth and differentiation due to offloading the gravitational strain normally exerted on cells. Although many studies have used two-dimensional (2D) cell culture systems to investigate the effects of microgravity on cell growth, three-dimensional (3D) culture scaffolds can offer more direct indications of the modified cell response to microgravity-related dysregulations compared to 2D culture methods. Thus, knowledge of 3D cell culture is essential for better understanding the in vivo tissue function and physiological response under microgravity conditions. This review discusses the advances in 2D and 3D cell culture studies, particularly emphasizing the role of hydrogels, which can provide cells with a mimic in vivo environment to collect a more natural response. We also summarized recent studies about cell growth and differentiation under real microgravity or simulated microgravity conditions using ground-based equipment. Finally, we anticipate that hydrogel-based 3D culture models will play an essential role in constructing organoids, discovering the causes of microgravity-dependent molecular and cellular changes, improving space tissue regeneration, and developing innovative therapeutic strategies. Future research into the 3D culture in microgravity conditions could lead to valuable therapeutic applications in health and pharmaceuticals.
Collapse
Affiliation(s)
- Chiyuan Ma
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Xianglong Duan
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Second Department of General Surgery, Shaanxi Provincial People’s Hospital, Xi’an, China
- *Correspondence: Xianglong Duan, ; Xiaohua Lei,
| | - Xiaohua Lei
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Xianglong Duan, ; Xiaohua Lei,
| |
Collapse
|
2
|
Xue Y, Seiler MJ, Tang WC, Wang JY, Delgado J, McLelland BT, Nistor G, Keirstead HS, Browne AW. Retinal organoids on-a-chip: a micro-millifluidic bioreactor for long-term organoid maintenance. LAB ON A CHIP 2021; 21:3361-3377. [PMID: 34236056 PMCID: PMC8387452 DOI: 10.1039/d1lc00011j] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Retinal degeneration is a leading cause of vision impairment and blindness worldwide and medical care for advanced disease does not exist. Stem cell-derived retinal organoids (RtOgs) became an emerging tool for tissue replacement therapy. However, existing RtOg production methods are highly heterogeneous. Controlled and predictable methodology and tools are needed to standardize RtOg production and maintenance. In this study, we designed a shear stress-free micro-millifluidic bioreactor for nearly labor-free retinal organoid maintenance. We used a stereolithography (SLA) 3D printer to fabricate a mold from which Polydimethylsiloxane (PDMS) was cast. We optimized the chip design using in silico simulations and in vitro evaluation to optimize mass transfer efficiency and concentration uniformity in each culture chamber. We successfully cultured RtOgs at three different differentiation stages (day 41, 88, and 128) on an optimized bioreactor chip for more than 1 month. We used different quantitative and qualitative techniques to fully characterize the RtOgs produced by static dish culture and bioreactor culture methods. By analyzing the results from phase contrast microscopy, single-cell RNA sequencing (scRNA seq), quantitative polymerase chain reaction (qPCR), immunohistology, and electron microscopy, we found that bioreactor-cultured RtOgs developed cell types and morphology comparable to static cultured ones and exhibited similar retinal genes expression levels. We also evaluated the metabolic activity of RtOgs in both groups using fluorescence lifetime imaging (FLIM), and found that the outer surface region of bioreactor cultured RtOgs had a comparable free/bound NADH ratio and overall lower long lifetime species (LLS) ratio than static cultured RtOgs during imaging. To summarize, we validated an automated micro-millifluidic device with significantly reduced shear stress to produce RtOgs of comparable quality to those maintained in conventional static culture.
Collapse
Affiliation(s)
- Yuntian Xue
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Nickerson KP, Llanos-Chea A, Ingano L, Serena G, Miranda-Ribera A, Perlman M, Lima R, Sztein MB, Fasano A, Senger S, Faherty CS. A Versatile Human Intestinal Organoid-Derived Epithelial Monolayer Model for the Study of Enteric Pathogens. Microbiol Spectr 2021; 9:e0000321. [PMID: 34106568 PMCID: PMC8552518 DOI: 10.1128/spectrum.00003-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 01/09/2023] Open
Abstract
Gastrointestinal infections cause significant morbidity and mortality worldwide. The complexity of human biology and limited insights into host-specific infection mechanisms are key barriers to current therapeutic development. Here, we demonstrate that two-dimensional epithelial monolayers derived from human intestinal organoids, combined with in vivo-like bacterial culturing conditions, provide significant advancements for the study of enteropathogens. Monolayers from the terminal ileum, cecum, and ascending colon recapitulated the composition of the gastrointestinal epithelium, in which several techniques were used to detect the presence of enterocytes, mucus-producing goblet cells, and other cell types following differentiation. Importantly, the addition of receptor activator of nuclear factor kappa-B ligand (RANKL) increased the presence of M cells, critical antigen-sampling cells often exploited by enteric pathogens. For infections, bacteria were grown under in vivo-like conditions known to induce virulence. Overall, interesting patterns of tissue tropism and clinical manifestations were observed. Shigella flexneri adhered efficiently to the cecum and colon; however, invasion in the colon was best following RANKL treatment. Both Salmonella enterica serovars Typhi and Typhimurium displayed different infection patterns, with S. Typhimurium causing more destruction of the terminal ileum and S. Typhi infecting the cecum more efficiently than the ileum, particularly with regard to adherence. Finally, various pathovars of Escherichia coli validated the model by confirming only adherence was observed with these strains. This work demonstrates that the combination of human-derived tissue with targeted bacterial growth conditions enables powerful analyses of human-specific infections that could lead to important insights into pathogenesis and accelerate future vaccine development. IMPORTANCE While traditional laboratory techniques and animal models have provided valuable knowledge in discerning virulence mechanisms of enteric pathogens, the complexity of the human gastrointestinal tract has hindered our understanding of physiologically relevant, human-specific interactions; and thus, has significantly delayed successful vaccine development. The human intestinal organoid-derived epithelial monolayer (HIODEM) model closely recapitulates the diverse cell populations of the intestine, allowing for the study of human-specific infections. Differentiation conditions permit the expansion of various cell populations, including M cells that are vital to immune recognition and the establishment of infection by some bacteria. We provide details of reproducible culture methods and infection conditions for the analyses of Shigella, Salmonella, and pathogenic Escherichia coli in which tissue tropism and pathogen-specific infection patterns were detected. This system will be vital for future studies that explore infection conditions, health status, or epigenetic differences and will serve as a novel screening platform for therapeutic development.
Collapse
Affiliation(s)
- Kourtney P. Nickerson
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandro Llanos-Chea
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Ingano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gloria Serena
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alba Miranda-Ribera
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosiane Lima
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part II: Systems and Applications. Processes (Basel) 2020. [DOI: 10.3390/pr9010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this second part of our systematic review on the research area of 3D cell culture in micro-bioreactors we give a detailed description of the published work with regard to the existing micro-bioreactor types and their applications, and highlight important results gathered with the respective systems. As an interesting detail, we found that micro-bioreactors have already been used in SARS-CoV research prior to the SARS-CoV2 pandemic. As our literature research revealed a variety of 3D cell culture configurations in the examined bioreactor systems, we defined in review part one “complexity levels” by means of the corresponding 3D cell culture techniques applied in the systems. The definition of the complexity is thereby based on the knowledge that the spatial distribution of cell-extracellular matrix interactions and the spatial distribution of homologous and heterologous cell–cell contacts play an important role in modulating cell functions. Because at least one of these parameters can be assigned to the 3D cell culture techniques discussed in the present review, we structured the studies according to the complexity levels applied in the MBR systems.
Collapse
|
5
|
Advanced 3D Cell Culture Techniques in Micro-Bioreactors, Part I: A Systematic Analysis of the Literature Published between 2000 and 2020. Processes (Basel) 2020. [DOI: 10.3390/pr8121656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Bioreactors have proven useful for a vast amount of applications. Besides classical large-scale bioreactors and fermenters for prokaryotic and eukaryotic organisms, micro-bioreactors, as specialized bioreactor systems, have become an invaluable tool for mammalian 3D cell cultures. In this systematic review we analyze the literature in the field of eukaryotic 3D cell culture in micro-bioreactors within the last 20 years. For this, we define complexity levels with regard to the cellular 3D microenvironment concerning cell–matrix-contact, cell–cell-contact and the number of different cell types present at the same time. Moreover, we examine the data with regard to the micro-bioreactor design including mode of cell stimulation/nutrient supply and materials used for the micro-bioreactors, the corresponding 3D cell culture techniques and the related cellular microenvironment, the cell types and in vitro models used. As a data source we used the National Library of Medicine and analyzed the studies published from 2000 to 2020.
Collapse
|
6
|
Giuffrida P, Curti M, Al-Akkad W, Biel C, Crowley C, Frenguelli L, Telese A, Hall A, Tamburrino D, Spoletini G, Fusai G, Tinozzi FP, Pietrabissa A, Corazza GR, De Coppi P, Pinzani M, Di Sabatino A, Rombouts K, Mazza G. Decellularized Human Gut as a Natural 3D Platform for Research in Intestinal Fibrosis. Inflamm Bowel Dis 2019; 25:1740-1750. [PMID: 31199863 DOI: 10.1093/ibd/izz115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The current methodologies for the identification of therapeutic targets for inflammatory bowel disease (IBD) are limited to conventional 2-dimensional (2D) cell cultures and animal models. The use of 3D decellularized human intestinal scaffolds obtained from surgically resected intestine and engineered with human intestinal cells may provide a major advancement in the development of innovative intestinal disease models. The aim of the present study was to design and validate a decellularization protocol for the production of acellular 3D extracellular matrix (ECM) scaffolds from the human duodenum. METHODS Scaffolds were characterized by verifying the preservation of the ECM protein composition and 3D architecture of the native intestine and were employed for tissue engineering with primary human intestinal myofibroblasts for up to 14 days. RESULTS Engrafted cells showed the ability to grow and remodel the surrounding ECM. mRNA expression of key genes involved in ECM turnover was significantly different when comparing primary human intestinal myofibroblasts cultured in 3D scaffolds with those cultured in standard 2D cultures on plastic dishes. Moreover, incubation with key profibrogenic growth factors such as TGFβ1 and PDGF-BB resulted in markedly different effects in standard 2D vs 3D cultures, further emphasizing the importance of using 3D cell cultures. CONCLUSIONS These results confirm the feasibility of 3D culture of human intestinal myofibroblasts in intestinal ECM scaffolds as an innovative platform for disease modeling, biomarker discovery, and drug testing in intestinal fibrosis.
Collapse
Affiliation(s)
- Paolo Giuffrida
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK.,First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Marco Curti
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK.,First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Walid Al-Akkad
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Carin Biel
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Claire Crowley
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Institute for Child Health, Great Ormond Street Hospital, University College London, London, UK
| | - Luca Frenguelli
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Andrea Telese
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Andrew Hall
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Domenico Tamburrino
- Division of Surgery, University College London, Royal Free Hospital, London, UK
| | - Gabriele Spoletini
- Division of Surgery, University College London, Royal Free Hospital, London, UK
| | - Giuseppe Fusai
- Division of Surgery, University College London, Royal Free Hospital, London, UK
| | - Francesco Paolo Tinozzi
- Department of Surgery, General Surgery II, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Andrea Pietrabissa
- Department of Surgery, General Surgery II, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Gino Roberto Corazza
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Paolo De Coppi
- Stem Cells and Regenerative Medicine Section, Developmental Biology and Cancer Programme, UCL Institute for Child Health, Great Ormond Street Hospital, University College London, London, UK.,Specialist Neonatal and Paediatric Surgery at Great Ormond Street Hospital, London, UK
| | - Massimo Pinzani
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Antonio Di Sabatino
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK.,First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Krista Rombouts
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| | - Giuseppe Mazza
- Regenerative Medicine & Fibrosis Group, Institute for Liver & Digestive Health, University College London, Royal Free Hospital, London, UK
| |
Collapse
|
7
|
Phelan MA, Gianforcaro AL, Gerstenhaber JA, Lelkes PI. An Air Bubble-Isolating Rotating Wall Vessel Bioreactor for Improved Spheroid/Organoid Formation. Tissue Eng Part C Methods 2019; 25:479-488. [PMID: 31328683 PMCID: PMC6686703 DOI: 10.1089/ten.tec.2019.0088] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
IMPACT STATEMENT The rotating wall vessel (RWV) bioreactor is a powerful tool for the generation of sizeable, faster-growing organoids. However, the ideal, low-shear, modeled microgravity environment in the RWV is frequently disrupted by the formation of bubbles, a critical but understated failure mode. To address this, we have designed and fabricated a novel, modified RWV bioreactor capable of continuously removing bubbles while providing optimal fluid dynamics. We validated the capacity of this device with computational and empirical studies. We anticipate that our novel bioreactor will be more consistent and easier to use and may fill a unique and unmet niche in the burgeoning field of organoids.
Collapse
Affiliation(s)
- Michael A. Phelan
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Anthony L. Gianforcaro
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Jonathan A. Gerstenhaber
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| | - Peter I. Lelkes
- Integrated Laboratory for Cellular Tissue Engineering and Regenerative Medicine, Department of Bioengineering, College of Engineering, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Salerno-Goncalves R, Kayastha D, Fasano A, Levine MM, Sztein MB. Crosstalk between leukocytes triggers differential immune responses against Salmonella enterica serovars Typhi and Paratyphi. PLoS Negl Trop Dis 2019; 13:e0007650. [PMID: 31412039 PMCID: PMC6709971 DOI: 10.1371/journal.pntd.0007650] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/26/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Enteric fevers, caused by the Salmonella enterica serovars Typhi (ST), Paratyphi A (PA) and Paratyphi B (PB), are life-threatening illnesses exhibiting very similar clinical symptoms but with distinct epidemiologies, geographical distributions and susceptibilities to antimicrobial treatment. Nevertheless, the mechanisms by which the host recognizes pathogens with high levels of homology, such as these bacterial serovars, remain poorly understood. Using a three-dimensional organotypic model of the human intestinal mucosa and PA, PB, and ST, we observed significant differences in the secretion patterns of pro-inflammatory cytokines and chemokines elicited by these serovars. These cytokines/chemokines were likely to be co-regulated and influenced the function of epithelial cells, such as the production of IL-8. We also found differing levels of polymorphonuclear leukocyte (PMN) migration among various infection conditions that either included or excluded lymphocytes and macrophages (Mϕ), strongly suggesting feedback mechanisms among these cells. Blocking experiments showed that IL-1β, IL-6, IL-8, TNF-α and CCL3 cytokines were involved in the differential regulation of migration patterns. We conclude that the crosstalk among the lymphocytes, Mϕ, PMN and epithelial cells is cytokine/chemokine-dependent and bacterial-serotype specific, and plays a pivotal role in orchestrating the functional efficiency of the innate cells and migratory characteristics of the leukocytes.
Collapse
Affiliation(s)
- Rosangela Salerno-Goncalves
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Darpan Kayastha
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States of America
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
9
|
Higginson EE, Ramachandran G, Panda A, Shipley ST, Kriel EH, DeTolla LJ, Lipsky M, Perkins DJ, Salerno-Goncalves R, Sztein MB, Pasetti MF, Levine MM, Tennant SM. Improved Tolerability of a Salmonella enterica Serovar Typhimurium Live-Attenuated Vaccine Strain Achieved by Balancing Inflammatory Potential with Immunogenicity. Infect Immun 2018; 86:e00440-18. [PMID: 30249748 PMCID: PMC6246900 DOI: 10.1128/iai.00440-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/19/2018] [Indexed: 12/23/2022] Open
Abstract
A notable proportion of Salmonella-associated gastroenteritis in the United States is attributed to Salmonella enterica serovar Typhimurium. We have previously shown that live-attenuated S Typhimurium vaccine candidate CVD 1921 (I77 ΔguaBA ΔclpP) was safe and immunogenic in rhesus macaques but was shed for an undesirably long time postimmunization. In mice, occasional mortality postvaccination was also noted (approximately 1 in every 15 mice). Here we describe a further attenuated vaccine candidate strain harboring deletions in two additional genes, htrA and pipA We determined that S Typhimurium requires pipA to elicit fluid accumulation in a rabbit ileal loop model of gastroenteritis, as an S Typhimurium ΔpipA mutant induced significantly less fluid accumulation in rabbit loops than the wild-type strain. New vaccine strain CVD 1926 (I77 ΔguaBA ΔclpP ΔpipA ΔhtrA) was assessed for inflammatory potential in an organoid model of human intestinal mucosa, where it induced less inflammatory cytokine production than organoids exposed to the precursor vaccine, CVD 1921. To assess vaccine safety and efficacy, mice were given three doses of CVD 1926 (109 CFU/dose) by oral gavage, and at 1 or 3 months postimmunization, mice were challenged with 700 or 100 LD50 (50% lethal doses), respectively, of wild-type strain I77. CVD 1926 was well tolerated and exhibited 47% vaccine efficacy following challenge with a high inoculum and 60% efficacy after challenge with a low inoculum of virulent S Typhimurium. CVD 1926 is less reactogenic yet equally as immunogenic and protective as previous iterations in a mouse model.
Collapse
Affiliation(s)
- Ellen E Higginson
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Girish Ramachandran
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aruna Panda
- Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Steven T Shipley
- Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Edwin H Kriel
- Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Louis J DeTolla
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Program of Comparative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Michael Lipsky
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Darren J Perkins
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rosangela Salerno-Goncalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Myron M Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sharon M Tennant
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Salerno-Gonçalves R, Galen JE, Levine MM, Fasano A, Sztein MB. Manipulation of Salmonella Typhi Gene Expression Impacts Innate Cell Responses in the Human Intestinal Mucosa. Front Immunol 2018; 9:2543. [PMID: 30443257 PMCID: PMC6221971 DOI: 10.3389/fimmu.2018.02543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 10/16/2018] [Indexed: 12/19/2022] Open
Abstract
Although immunity induced by typhoid fever is moderated and short-lived, typhoid vaccination with the attenuated Ty21a oral vaccine generates long-lasting protection rates reaching up to 92%. Thus, there are important differences on how wild-type Salmonella and typhoid vaccine strains stimulate host immunity. We hypothesize that vaccine strains with different mutations might affect gut inflammation and intestinal permeability by different mechanisms. To test this hypothesis, we used an in vitro organotypic model of the human intestinal mucosa composed of human intestinal epithelial cells, lymphocytes/monocytes, endothelial cells, and fibroblasts. We also used six Salmonella enterica serovar Typhi (S. Typhi) strains: the licensed Ty21a oral vaccine, four typhoid vaccine candidates (i.e., CVD 908, CVD 909, CVD 910, and CVD 915) and the wild-type Ty2 strain. We found that genetically engineered S. Typhi vaccine strains elicit differential host changes not only in the intestinal permeability and secretion of inflammatory cytokines, but also in the phenotype and activation pathways of innate cells. These changes were distinct from those elicited by the parent wild-type S. Typhi and depended on the genetic manipulation. In sum, these results emphasize the importance of carefully selecting specific manipulations of the Salmonella genome in the development of typhoid vaccines.
Collapse
Affiliation(s)
- Rosângela Salerno-Gonçalves
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - James E. Galen
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Modeling Host-Pathogen Interactions in the Context of the Microenvironment: Three-Dimensional Cell Culture Comes of Age. Infect Immun 2018; 86:IAI.00282-18. [PMID: 30181350 DOI: 10.1128/iai.00282-18] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tissues and organs provide the structural and biochemical landscapes upon which microbial pathogens and commensals function to regulate health and disease. While flat two-dimensional (2-D) monolayers composed of a single cell type have provided important insight into understanding host-pathogen interactions and infectious disease mechanisms, these reductionist models lack many essential features present in the native host microenvironment that are known to regulate infection, including three-dimensional (3-D) architecture, multicellular complexity, commensal microbiota, gas exchange and nutrient gradients, and physiologically relevant biomechanical forces (e.g., fluid shear, stretch, compression). A major challenge in tissue engineering for infectious disease research is recreating this dynamic 3-D microenvironment (biological, chemical, and physical/mechanical) to more accurately model the initiation and progression of host-pathogen interactions in the laboratory. Here we review selected 3-D models of human intestinal mucosa, which represent a major portal of entry for infectious pathogens and an important niche for commensal microbiota. We highlight seminal studies that have used these models to interrogate host-pathogen interactions and infectious disease mechanisms, and we present this literature in the appropriate historical context. Models discussed include 3-D organotypic cultures engineered in the rotating wall vessel (RWV) bioreactor, extracellular matrix (ECM)-embedded/organoid models, and organ-on-a-chip (OAC) models. Collectively, these technologies provide a more physiologically relevant and predictive framework for investigating infectious disease mechanisms and antimicrobial therapies at the intersection of the host, microbe, and their local microenvironments.
Collapse
|
12
|
Nickerson KP, Senger S, Zhang Y, Lima R, Patel S, Ingano L, Flavahan WA, Kumar DKV, Fraser CM, Faherty CS, Sztein MB, Fiorentino M, Fasano A. Salmonella Typhi Colonization Provokes Extensive Transcriptional Changes Aimed at Evading Host Mucosal Immune Defense During Early Infection of Human Intestinal Tissue. EBioMedicine 2018; 31:92-109. [PMID: 29735417 PMCID: PMC6013756 DOI: 10.1016/j.ebiom.2018.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/29/2022] Open
Abstract
Commensal microorganisms influence a variety of host functions in the gut, including immune response, glucose homeostasis, metabolic pathways and oxidative stress, among others. This study describes how Salmonella Typhi, the pathogen responsible for typhoid fever, uses similar strategies to escape immune defense responses and survive within its human host. To elucidate the early mechanisms of typhoid fever, we performed studies using healthy human intestinal tissue samples and "mini-guts," organoids grown from intestinal tissue taken from biopsy specimens. We analyzed gene expression changes in human intestinal specimens and bacterial cells both separately and after colonization. Our results showed mechanistic strategies that S. Typhi uses to rearrange the cellular machinery of the host cytoskeleton to successfully invade the intestinal epithelium, promote polarized cytokine release and evade immune system activation by downregulating genes involved in antigen sampling and presentation during infection. This work adds novel information regarding S. Typhi infection pathogenesis in humans, by replicating work shown in traditional cell models, and providing new data that can be applied to future vaccine development strategies.
Collapse
Affiliation(s)
- K P Nickerson
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States.
| | - S Senger
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Y Zhang
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - R Lima
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - S Patel
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - L Ingano
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States
| | - W A Flavahan
- Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
| | - D K V Kumar
- Department for the Neuroscience of Genetics and Aging, Massachusetts General Hospital, Boston, MA, United States
| | - C M Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - C S Faherty
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - M B Sztein
- Center for Vaccine Development, Department of Pediatrics, University of Maryland, Baltimore, MD, United States
| | - M Fiorentino
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States
| | - A Fasano
- Department of Pediatric Gastroenterology, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, United States; Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, United States.
| |
Collapse
|
13
|
Salerno-Goncalves R, Safavie F, Fasano A, Sztein MB. Free and complexed-secretory immunoglobulin A triggers distinct intestinal epithelial cell responses. Clin Exp Immunol 2016; 185:338-47. [PMID: 27084834 PMCID: PMC4991520 DOI: 10.1111/cei.12801] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/13/2016] [Indexed: 12/12/2022] Open
Abstract
Secretory immunoglobulin A (SIgA) antibodies play an important role in protecting the mucosal surfaces against pathogens and maintaining homeostasis with the commensal microbiota. Because a substantial portion of the gut microbiota is coated with SIgA, we hypothesized that microbiota–SIgA complexes are important for the maintenance of gut homeostasis. Here we investigated the relationship between microbiota–SIgA complexes and inflammatory epithelial cell responses. We used a multi‐cellular three‐dimensional (3D) organotypical model of the human intestinal mucosa composed of an intestinal epithelial cell line and primary human lymphocytes/monocytes, endothelial cells and fibroblasts. We also used human SIgA from human colostrum, and a prominent bacterial member of the first colonizers, Escherichia coli, as a surrogate commensal. We found that free and microbiota‐complexed SIgA triggered different epithelial responses. While free SIgA up‐regulated mucus production, expression of polymeric immunoglobulin receptor (pIgR) and secretion of interleukin‐8 and tumoir necrosis factor‐α, microbiota‐complexed SIgA mitigated these responses. These results suggest that free and complexed SIgA have different functions as immunoregulatory agents in the gut and that an imbalance between the two may affect gut homeostasis.
Collapse
Affiliation(s)
- R Salerno-Goncalves
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - F Safavie
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| | - A Fasano
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Boston, MA, USA
| | - M B Sztein
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|