1
|
Tran KKN, Wong VHY, Hoang A, Finkelstein DI, Bui BV, Nguyen CTO. Retinal alpha-synuclein accumulation correlates with retinal dysfunction and structural thinning in the A53T mouse model of Parkinson's disease. Front Neurosci 2023; 17:1146979. [PMID: 37214398 PMCID: PMC10196133 DOI: 10.3389/fnins.2023.1146979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/17/2023] [Indexed: 05/24/2023] Open
Abstract
Abnormal alpha-synuclein (α-SYN) protein deposition has long been recognized as one of the pathological hallmarks of Parkinson's disease's (PD). This study considers the potential utility of PD retinal biomarkers by investigating retinal changes in a well characterized PD model of α-SYN overexpression and how these correspond to the presence of retinal α-SYN. Transgenic A53T homozygous (HOM) mice overexpressing human α-SYN and wildtype (WT) control littermates were assessed at 4, 6, and 14 months of age (male and female, n = 15-29 per group). In vivo retinal function (electroretinography, ERG) and structure (optical coherence tomography, OCT) were recorded, and retinal immunohistochemistry and western blot assays were performed to examine retinal α-SYN and tyrosine hydroxylase. Compared to WT controls, A53T mice exhibited reduced light-adapted (cone photoreceptor and bipolar cell amplitude, p < 0.0001) ERG responses and outer retinal thinning (outer plexiform layer, outer nuclear layer, p < 0.0001) which correlated with elevated levels of α-SYN. These retinal signatures provide a high throughput means to study α-SYN induced neurodegeneration and may be useful in vivo endpoints for PD drug discovery.
Collapse
Affiliation(s)
- Katie K. N. Tran
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Vickie H. Y. Wong
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Anh Hoang
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Tran KKN, Wong VHY, Lim JKH, Shahandeh A, Hoang A, Finkelstein DI, Bui BV, Nguyen CTO. Characterization of retinal function and structure in the MPTP murine model of Parkinson’s disease. Sci Rep 2022; 12:7610. [PMID: 35534594 PMCID: PMC9085791 DOI: 10.1038/s41598-022-11495-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
AbstractIn addition to well characterized motor symptoms, visual disturbances are increasingly recognized as an early manifestation in Parkinson’s disease (PD). A better understanding of the mechanisms underlying these changes would facilitate the development of vision tests which can be used as preclinical biomarkers to support the development of novel therapeutics for PD. This study aims to characterize the retinal phenotype of a mouse model of dopaminergic dysfunction and to examine whether these changes are reversible with levodopa treatment. We use a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD to characterize the neurotoxic effects of MPTP on in vivo retinal function (electroretinography, ERG), retinal structure (optical coherence tomography, OCT) and retinal dopaminergic cell number (tyrosine hydroxylase immunohistochemistry, IHC) at two time points (21 and 45 days) post MPTP model induction. We also investigate the effect of levodopa (L-DOPA) as a proof-of-principle chronic intervention against MPTP-induced changes in the retina. We show that MPTP decreases dopaminergic amacrine cell number (9%, p < 0.05) and that a component of the ERG that involves these cells, in particular oscillatory potential (OP) peak timing, was significantly delayed at Day 45 (7–13%, p < 0.01). This functional deficit was paralleled by outer plexiform layer (OPL) thinning (p < 0.05). L-DOPA treatment ameliorated oscillatory potential deficits (7–13%, p < 0.001) in MPTP animals. Our data suggest that the MPTP toxin slows the timing of inner retinal feedback circuits related to retinal dopaminergic pathways which mirrors findings from humans with PD. It also indicates that the MPTP model causes structural thinning of the outer retinal layer on OCT imaging that is not ameliorated with L-DOPA treatment. Together, these non-invasive measures serve as effective biomarkers for PD diagnosis as well as for quantifying the effect of therapy.
Collapse
|
3
|
Blades F, Wong VHY, Nguyen CTO, Bui BV, Kilpatrick TJ, Binder MD. Tyro3 Contributes to Retinal Ganglion Cell Function, Survival and Dendritic Density in the Mouse Retina. Front Neurosci 2020; 14:840. [PMID: 32922258 PMCID: PMC7457004 DOI: 10.3389/fnins.2020.00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023] Open
Abstract
Retinal ganglion cells (RGCs) are the only output neurons of the vertebrate retina, integrating signals from other retinal neurons and transmitting information to the visual centers of the brain. The death of RGCs is a common outcome in many optic neuropathies, such as glaucoma, demyelinating optic neuritis and ischemic optic neuropathy, resulting in visual defects and blindness. There are currently no therapies in clinical use which can prevent RGC death in optic neuropathies; therefore, the identification of new targets for supporting RGC survival is crucial in the development of novel treatments for eye diseases. In this study we identify that the receptor tyrosine kinase, Tyro3, is critical for normal neuronal function in the adult mouse retina. The loss of Tyro3 results in a reduction in photoreceptor and RGC function as measured using electroretinography. The reduction in RGC function was associated with a thinner retinal nerve fiber layer and fewer RGCs. In the central retina, independent of the loss of RGCs, Tyro3 deficiency resulted in a dramatic reduction in the number of RGC dendrites in the inner plexiform layer. Our results show that Tyro3 has a novel, previously unidentified role in retinal function, RGC survival and RGC morphology. The Tyro3 pathway could therefore provide an alternative, targetable pathway for RGC protective therapeutics.
Collapse
Affiliation(s)
- Farrah Blades
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michele D Binder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Lim JKH, Li QX, He Z, Vingrys AJ, Chinnery HR, Mullen J, Bui BV, Nguyen CTO. Retinal Functional and Structural Changes in the 5xFAD Mouse Model of Alzheimer's Disease. Front Neurosci 2020; 14:862. [PMID: 32903645 PMCID: PMC7438734 DOI: 10.3389/fnins.2020.00862] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease is characterized by the aberrant deposition of protein in the brain and is the leading cause of dementia worldwide. Increasingly, there have been reports of the presence of these protein hallmarks in the retina. In this study, we assayed the retina of 5xFAD mice, a transgenic model of amyloid deposition known to exhibit dementia-like symptoms with age. Using OCT, we found that the retinal nerve fiber layer was thinner in 5xFAD at 6, 12, and 17 months of age compared with wild-type littermates, but the inner plexiform layer was thicker at 6 months old. Retinal function showed reduced ganglion cell responses to light in 5xFAD at 6, 12, and 17 months of age. This functional loss was observed in the outer retina at 17 months of age but not in younger mice. We showed using immunohistochemistry and ELISA that soluble and insoluble amyloid was present in the retina and brain at all ages. In conclusion, we report that amyloid is present in brain and retina of 5xFAD mice and that the pattern of neuronal dysfunction occurs in the inner retina at the early ages and progresses to encompass the outer retina with age. This implies that the inner retina is more sensitive to amyloid changes in early disease and that the outer retina is also affected with disease progression.
Collapse
Affiliation(s)
- Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia.,Optometry and Vision Science, College of Nursing and Health Sciences, Flinders University, Bedford Park, SA, Australia
| | - Qiao-Xin Li
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Jamie Mullen
- AstraZeneca Neuroscience, Cambridge, MA, United States
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Toledo CR, Pereira VV, Dourado LFN, Paiva MRB, Silva-Cunha A. Corosolic acid: antiangiogenic activity and safety of intravitreal injection in rats eyes. Doc Ophthalmol 2019; 138:181-194. [DOI: 10.1007/s10633-019-09682-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 02/22/2019] [Indexed: 12/28/2022]
|
6
|
He Z, Zhao D, van Koeverden AK, Nguyen CT, Lim JKH, Wong VHY, Vingrys AJ, Bui BV. A Model of Glaucoma Induced by Circumlimbal Suture in Rats and Mice. J Vis Exp 2018. [PMID: 30346390 DOI: 10.3791/58287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The circumlimbal suture is a technique for inducing experimental glaucoma in rodents by chronically elevating intraocular pressure (IOP), a well-known risk factor for glaucoma. This protocol demonstrates a step-by-step guide on this technique in Long Evans rats and C57BL/6 mice. Under general anesthesia, a "purse-string" suture is applied on the conjunctiva, around the equator and behind the limbus of the eye. The fellow eye serves as an untreated control. Over the duration of our study, which was a period of 8 weeks for rats and 12 weeks for mice, IOP remained elevated, as measured regularly by rebound tonometry in conscious animals without topical anesthesia. In both species, the sutured eyes showed electroretinogram features consistent with preferential inner retinal dysfunction. Optical coherence tomography showed selective thinning of the retinal nerve fiber layer. Histology of the rat retina in cross-section found reduced cell density in the ganglion cell layer, but no change in other cellular layers. Staining of flat-mounted mouse retinae with a ganglion cell specific marker (RBPMS) confirmed ganglion cell loss. The circumlimbal suture is a simple, minimally invasive and cost-effective way to induce ocular hypertension that leads to ganglion cell injury in both rats and mice.
Collapse
Affiliation(s)
- Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne
| | | | | | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne;
| |
Collapse
|
7
|
Ji S, Lin S, Chen J, Huang X, Wei CC, Li Z, Tang S. Neuroprotection of Transplanting Human Umbilical Cord Mesenchymal Stem Cells in a Microbead Induced Ocular Hypertension Rat Model. Curr Eye Res 2018; 43:810-820. [PMID: 29505314 DOI: 10.1080/02713683.2018.1440604] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE The purpose of this study is to investigate the potential therapeutic benefits of intravitreally transplanted human umbilical cord mesenchymal stem cells (UC-MSCs) in an animal model of microbead-injection-induced ocular hypertension (OHT). METHODS UC-MSCs were isolated from human umbilical cords and then cultured. The OHT model was induced via intracameral injection of polystyrene microbeads in Sprague-Dawley adult rat eyes. Fifty-four healthy adult rats were randomly divided into three groups: normal control, OHT model treated with intravitreal transplantation of UC-MSCs, or phosphate-buffered saline (PBS). Two days after OHT was induced, either 5 µl 105 UC-MSCs suspension or PBS was injected into the vitreous cavity of rats. UC-MSCs localization and integration were examined via immunohistochemistry. Neuroprotection was quantified by counting retinal ganglion cells (RGCs) and axons 2 weeks following transplantation. The expression levels of glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and glial fibrillary acidic protein (GFAP) were assessed via immunohistochemistry and Western blot. Functional recovery was assessed 2 weeks after transplantation via scotopic threshold response (STR) electroretinography. RESULTS Elevated IOP levels were sustained at least 3 weeks after intracameral microbead injection and the number of β-III-tubulin+ RGCs significantly declined compared to PBS-injected eyes. UC-MSCs survived for at least 2 weeks after intravitreal transplantation and predominantly located in the vitreous cavity. A fraction of cells migrated into the ganglion cell layer of host retina, but without differentiation. Intravitreal UC-MSC transplantation resulted in increased number of RGCs, axons, and increased expression of GDNF and BDNF but decreased expression of GFAP. Intravitreal delivery of UC-MSCs significantly improved the recovery of the positive STR. CONCLUSIONS Intravitreal transplantation of UC-MSCs revealed the neuroprotection in the microbead-injection induced OHT. The effects could be related to the secretion of tropic factors (BDNF and GDNF) and the modulation of glial cell activation.
Collapse
Affiliation(s)
- Shangli Ji
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| | - Saiyue Lin
- b Department of Anatomy and Neurobiology, Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Jiansu Chen
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| | - Xinping Huang
- c Department of Biology , ShenzhenHornetcorn Biotechnology Co., Ltd , Shenzhen , Guangdong , China
| | - Chih-Chang Wei
- c Department of Biology , ShenzhenHornetcorn Biotechnology Co., Ltd , Shenzhen , Guangdong , China
| | - Zhiyuan Li
- b Department of Anatomy and Neurobiology, Xiangya School of Medicine , Central South University , Changsha , Hunan , China
| | - Shibo Tang
- a Aier School of Ophthalmology , Central South University , Changsha , Hunan , China
| |
Collapse
|
8
|
Zhao D, Nguyen CTO, He Z, Wong VHY, van Koeverden AK, Vingrys AJ, Bui BV. Age-related changes in the response of retinal structure, function and blood flow to pressure modification in rats. Sci Rep 2018; 8:2947. [PMID: 29440700 PMCID: PMC5811482 DOI: 10.1038/s41598-018-21203-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Age-related changes to the balance between the pressure inside the eye (intraocular pressure, IOP) and the pressure inside the brain (intracranial pressure, ICP) can modify the risk of glaucoma. In this study, we consider whether the optic nerve in older rat eyes is more susceptible to acute IOP and ICP modification. We systematically manipulate both ICP and IOP and quantify their effects on ganglion cell function (electroretinography, ERG), optic nerve structure (optical coherence tomography, OCT) and retinal blood flow (Doppler OCT). We show that ganglion cell function in older eyes was more susceptible to a higher optic nerve pressure difference (ONPD = IOP - ICP). This age-related susceptibility could not be explained by poorer blood flow with elevated ONPD. Rather, as ONPD increased the retinal nerve fibre layer showed greater compression, and the retinal surface showed less deformation in older eyes. Our data suggest that age-related changes to connective tissues in and around the rat optic nerve make it less flexible, which may result in greater strain on ganglion cell axons. This may account for greater functional susceptibility to higher optic nerve pressure differences in older rat eyes. Further studies in a species with a well-developed lamina cribrosa are needed to determine the clinical importance of these observations.
Collapse
Affiliation(s)
- Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia.
| |
Collapse
|