1
|
Wang J, Thomas HR, Chen Y, Percival SM, Waldrep SC, Ramaker RC, Thompson RG, Cooper SJ, Chong Z, Parant JM. Reduced sister chromatid cohesion acts as a tumor penetrance modifier. PLoS Genet 2022; 18:e1010341. [PMID: 35994499 PMCID: PMC9436123 DOI: 10.1371/journal.pgen.1010341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/01/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Sister chromatid cohesion (SCC) is an important process in chromosome segregation. ESCO2 is essential for establishment of SCC and is often deleted/altered in human cancers. We demonstrate that esco2 haploinsufficiency results in reduced SCC and accelerates the timing of tumor onset in both zebrafish and mouse p53 heterozygous null models, but not in p53 homozygous mutant or wild-type animals. These data indicate that esco2 haploinsufficiency accelerates tumor onset in a loss of heterozygosity (LOH) sensitive background. Analysis of The Cancer Genome Atlas (TCGA) confirmed ESCO2 deficient tumors have elevated number of LOH events throughout the genome. Further, we demonstrated heterozygous loss of sgo1, important in maintaining SCC, also results in reduced SCC and accelerated tumor formation in a p53 heterozygous background. Surprisingly, while we did observe elevated levels of chromosome missegregation and micronuclei formation in esco2 heterozygous mutant animals, this chromosomal instability did not contribute to the accelerated tumor onset in a p53 heterozygous background. Interestingly, SCC also plays a role in homologous recombination, and we did observe elevated levels of mitotic recombination derived p53 LOH in tumors from esco2 haploinsufficient animals; as well as elevated levels of mitotic recombination throughout the genome of human ESCO2 deficient tumors. Together these data suggest that reduced SCC contributes to accelerated tumor penetrance through elevated mitotic recombination. Tumorigenesis often involves the inactivation of tumor suppressor genes. This often encompasses an inactivation mutation in one allele and loss of the other wild-type allele, referred to as loss of heterozygosity (LOH). The rate at which the cells lose the wild-type allele can influence the timing of tumor onset, and therefore an indicator of a patient’s risk of cancer. Factors that influence this process could be used as a predictive indicator of cancer risk, however these factors are still unclear. We demonstrate that partial impairment of sister chromatid cohesion (SCC), a fundamental component of the chromosome segregation in mitosis and homologous recombination repair, enhanced tumorigenesis. Our data suggest this is through elevated levels of mitotic recombination derived p53 LOH. This study emphasizes the importance of understanding how impaired SCC, mitotic recombination rates, and LOH rates influence cancer risk.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Holly R. Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Yu Chen
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - Stefanie M. Percival
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Stephanie C. Waldrep
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Ryne C. Ramaker
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Robert G. Thompson
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
| | - Sara J. Cooper
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Zechen Chong
- Department of Genetics, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- Informatics Institute, University of Alabama at Birmingham Heersink School of Medicine, Alabama, United States of America
| | - John M. Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
2
|
Wang J, Thomas HR, Li Z, Yeo NCF, Scott HE, Dang N, Hossain MI, Andrabi SA, Parant JM. Puma, noxa, p53, and p63 differentially mediate stress pathway induced apoptosis. Cell Death Dis 2021; 12:659. [PMID: 34193827 PMCID: PMC8245518 DOI: 10.1038/s41419-021-03902-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Cellular stress can lead to several human disease pathologies due to aberrant cell death. The p53 family (tp53, tp63, and tp73) and downstream transcriptional apoptotic target genes (PUMA/BBC3 and NOXA/PMAIP1) have been implicated as mediators of stress signals. To evaluate the importance of key stress response components in vivo, we have generated zebrafish null alleles in puma, noxa, p53, p63, and p73. Utilizing these genetic mutants, we have deciphered that the apoptotic response to genotoxic stress requires p53 and puma, but not p63, p73, or noxa. We also identified a delayed secondary wave of genotoxic stress-induced apoptosis that is p53/puma independent. Contrary to genotoxic stress, ER stress-induced apoptosis requires p63 and puma, but not p53, p73, or noxa. Lastly, the oxidative stress-induced apoptotic response requires p63, and both noxa and puma. Our data also indicate that while the neural tube is poised for apoptosis due to genotoxic stress, the epidermis is poised for apoptosis due to ER and oxidative stress. These data indicate there are convergent as well as unique molecular pathways involved in the different stress responses. The commonality of puma in these stress pathways, and the lack of gross or tumorigenic phenotypes with puma loss suggest that a inhibitor of Puma may have therapeutic application. In addition, we have also generated a knockout of the negative regulator of p53, mdm2 to further evaluate the p53-induced apoptosis. Our data indicate that the p53 null allele completely rescues the mdm2 null lethality, while the puma null completely rescues the mdm2 null apoptosis but only partially rescues the phenotype. Indicating Puma is the key mediator of p53-dependent apoptosis. Interestingly the p53 homozygous null zebrafish develop tumors faster than the previously described p53 homozygous missense mutant zebrafish, suggesting the missense allele may be hypomorphic allele.
Collapse
Affiliation(s)
- Jun Wang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Holly R Thomas
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Zhang Li
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nan Cher Florence Yeo
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Hannah E Scott
- Department of Biology, University of Alabama at Birmingham Collage of Arts and Sciences Department and Genetics Department, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Nghi Dang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Mohammed Iqbal Hossain
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Shaida A Andrabi
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - John M Parant
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| |
Collapse
|
3
|
Wheatley SP, Wheatley DN. Transporting cells over several days without dry-ice. J Cell Sci 2019; 132:jcs.238139. [PMID: 31578238 PMCID: PMC6857593 DOI: 10.1242/jcs.238139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/24/2019] [Indexed: 12/16/2022] Open
Abstract
This paper describes a simple, hazard-free and inexpensive procedure that allows researchers to send cultured cells across the globe at ambient temperatures. The method enables transit of up to 2 weeks without compromising cell recovery. Its use will assist collaborators in distant laboratories to exchange cells without using dry-ice. Summary: An easy dry-ice-free method of sending cultured cells across the globe at ambient temperatures.
Collapse
Affiliation(s)
- Sally P Wheatley
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | | |
Collapse
|
4
|
Madakashira B, Corbett L, Zhang C, Paoli P, Casement JW, Mann J, Sadler KC, Mann DA. Variant Histone H2afv reprograms DNA methylation during early zebrafish development. Epigenetics 2017; 12:811-824. [PMID: 29099280 PMCID: PMC5739095 DOI: 10.1080/15592294.2017.1359382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The DNA methylome is re-patterned during discrete phases of vertebrate development. In zebrafish, there are 2 waves of global DNA demethylation and re-methylation: the first occurs before gastrulation when the parental methylome is changed to the zygotic pattern and the second occurs after formation of the embryonic body axis, during organ specification. The occupancy of the histone variant H2A.Z and regions of DNA methylation are generally anti-correlated, and it has been proposed that H2A.Z restricts the boundaries of highly methylated regions. While many studies have described the dynamics of methylome changes during early zebrafish development, the factors involved in establishing the DNA methylation landscape in zebrafish embryos have not been identified. We test the hypothesis that the zebrafish ortholog of H2A.Z (H2afv) restricts DNA methylation during development. We find that, in control embryos, bulk genome methylation decreases after gastrulation, with a nadir at the bud stage, and peaks during mid-somitogenesis; by 24 hours post -fertilization, total DNA methylation levels return to those detected in gastrula. Early zebrafish embryos depleted of H2afv have significantly more bulk DNA methylation during somitogenesis, suggesting that H2afv limits methylation during this stage of development. H2afv deficient embryos are small, with multisystemic abnormalities. Genetic interaction experiments demonstrate that these phenotypes are suppressed by depletion of DNA methyltransferase 1 (Dnmt1). This work demonstrates that H2afv is essential for global DNA methylation reprogramming during early vertebrate development and that embryonic development requires crosstalk between H2afv and Dnmt1.
Collapse
Affiliation(s)
- Bhavani Madakashira
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| | - Laura Corbett
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - Chi Zhang
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates
| | - Pier Paoli
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - John W Casement
- c Bioinformatics Support Unit, Faculty of Medical Sciences , Newcastle University , Newcastle Upon Tyne , NE24HH
| | - Jelena Mann
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| | - Kirsten C Sadler
- a Program in Biology , New York University Abu Dhabi , Abu Dhabi , United Arab Emirates.,d Department of Medicine/Division of Liver Diseases, Department of Developmental and Regenerative Biology , Icahn School of Medicine at Mount Sinai , New York , New York
| | - Derek A Mann
- b Fibrosis Group , Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne , NE24HH
| |
Collapse
|
5
|
Lu Y, Dai X, Zhang M, Miao Y, Zhou C, Cui Z, Xiong B. Cohesin acetyltransferase Esco2 regulates SAC and kinetochore functions via maintaining H4K16 acetylation during mouse oocyte meiosis. Nucleic Acids Res 2017; 45:9388-9397. [PMID: 28934466 PMCID: PMC5766191 DOI: 10.1093/nar/gkx563] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/19/2017] [Indexed: 01/11/2023] Open
Abstract
Sister chromatid cohesion, mediated by cohesin complex and established by the acetyltransferases Esco1 and Esco2, is essential for faithful chromosome segregation. Mutations in Esco2 cause Roberts syndrome, a developmental disease characterized by severe prenatal retardation as well as limb and facial abnormalities. However, its exact roles during oocyte meiosis have not clearly defined. Here, we report that Esco2 localizes to the chromosomes during oocyte meiotic maturation. Depletion of Esco2 by morpholino microinjection leads to the precocious polar body extrusion, the escape of metaphase I arrest induced by nocodazole treatment and the loss of BubR1 from kinetochores, indicative of inactivated SAC. Furthermore, depletion of Esco2 causes a severely impaired spindle assembly and chromosome alignment, accompanied by the remarkably elevated incidence of defective kinetochore-microtubule attachments which consequently lead to the generation of aneuploid eggs. Notably, we find that the involvement of Esco2 in SAC and kinetochore functions is mediated by its binding to histone H4 and acetylation of H4K16 both in vivo and in vitro. Thus, our data assign a novel meiotic function to Esco2 beyond its role in the cohesion establishment during mouse oocyte meiosis.
Collapse
Affiliation(s)
- Yajuan Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxin Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yilong Miao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaokang Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bo Xiong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|