1
|
Lu X, Tan S, Wu M, Ju H, Liang X, Li P. Evaluation of a new magnetic bead as an integrated platform for systematic CTC recognition, capture and clinical analysis. Colloids Surf B Biointerfaces 2020; 199:111542. [PMID: 33373845 DOI: 10.1016/j.colsurfb.2020.111542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/11/2020] [Accepted: 12/12/2020] [Indexed: 12/28/2022]
Abstract
A novel form of magnetic bead, namely antibody-coated magnetic lipid nano-vehicle (AMLV), was synthesized by embedding Fe3O4 nanoparticles into an amphiphilic antibody-modified liposome as a high-performance circulating tumor cell (CTC) hunter. The CTC capture performance of AMLV was validated based on an enlarged patient sample (including 318 colorectal, 78 breast, 77 lung and 55 liver cancer patients) with high detection rate. The preliminary comparison with Cellsearch was also conducted, indicating that the cell membrane-semblance AMLVEpCAM showed higher capture performance for different kinds of EpCAM-expressed circulating tumor cells in the peripheral blood (4.4 ± 1.2-fold for AMLVEpCAM vs CellsearchTM, n=5, P<0.001). Moreover, the AMLVEpCAM-isolated CTCs could be used as a functional material to provide various clinical information for tumor patients and work as an alternative of tumor tissue to conduct gene analysis after conventional PCR amplification.
Collapse
Affiliation(s)
- Xinmiao Lu
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Sheng Tan
- Department of Cardiothoracic Surgery, The Affiliated Hospital of XuZhou Medical University, Xuzhou, PR China
| | - Muyu Wu
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Huijun Ju
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln2200, XieTu Rd, Shanghai 200032, PR China.
| | - Peiyong Li
- Department of Nuclear Medicine Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, PR China.
| |
Collapse
|
2
|
Takagi H, Dong L, Kuczler MD, Lombardo K, Hirai M, Amend SR, Pienta KJ. Analysis of the Circulating Tumor Cell Capture Ability of a Slit Filter-Based Method in Comparison to a Selection-Free Method in Multiple Cancer Types. Int J Mol Sci 2020; 21:ijms21239031. [PMID: 33261132 PMCID: PMC7730626 DOI: 10.3390/ijms21239031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
Circulating tumor cells (CTCs) are a promising biomarker for cancer liquid biopsy. To evaluate the CTC capture bias and detection capability of the slit filter-based CTC isolation platform (CTC-FIND), we prospectively compared it head to head to a selection-free platform (AccuCyte®-CyteFinder® system). We used the two methods to determine the CTC counts, CTC positive rates, CTC size distributions, and CTC phenotypes in 36 patients with metastatic cancer. Between the two methods, the median CTC counts were not significantly different and the total counts were correlated (r = 0.63, p < 0.0001). The CTC positive rate by CTC-FIND was significantly higher than that by AccuCyte®-CyteFinder® system (91.7% vs. 66.7%, p < 0.05). The median diameter of CTCs collected by CTC-FIND was significantly larger (13.0 μm, range 5.2–52.0 vs. 10.4 μm, range 5.2–44.2, p < 0.0001). The distributions of CTC phenotypes (CK+EpCAM+, CK+EpCAM− or CK−EpCAM+) detected by both methods were similar. These results suggested that CTC-FIND can detect more CTC-positive cases but with a bias toward large size of CTCs.
Collapse
Affiliation(s)
- Hidenori Takagi
- Research and Development Division, ARKRAY, Inc. Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan;
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
- Correspondence: ; Tel.: +81-75-662-8979; Fax: +81-75-431-1202
| | - Liang Dong
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
- Department of Urology and Renji Hospital, Shanghai Jiao Tong University School of Medicine, 1630 Dongfang Road, Shanghai 200025, China
| | - Morgan D. Kuczler
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Kara Lombardo
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc. Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto 602-0008, Japan;
| | - Sarah R. Amend
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| | - Kenneth J. Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA; (L.D.); (M.D.K.); (K.L.); (S.R.A.); (K.J.P.)
| |
Collapse
|