1
|
Kumar N, Joisher H, Ganguly A. Polymeric Scaffolds for Pancreatic Tissue Engineering: A Review. Rev Diabet Stud 2018; 14:334-353. [PMID: 29590227 PMCID: PMC6230446 DOI: 10.1900/rds.2017.14.334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022] Open
Abstract
In recent years, there has been an alarming increase in the incidence of diabetes, with one in every eleven individuals worldwide suffering from this debilitating disease. As the available treatment options fail to reduce disease progression, novel avenues such as the bioartificial pancreas are being given serious consideration. In the past decade, the research focus has shifted towards the field of tissue engineering, which helps to design biological substitutes for repair and replacement of non-functional or damaged organs. Scaffolds constitute an integral part of tissue engineering; they have been shown to mimic the native extracellular matrix, thereby supporting cell viability and proliferation. This review offers a novel compilation of the recent advances in polymeric scaffolds, which are used for pancreatic tissue engineering. Furthermore, in this article, the design strategies for bioartificial pancreatic constructs and their future applications in cell-based therapy are discussed.
Collapse
Affiliation(s)
| | | | - Anasuya Ganguly
- Department of Biological Sciences, BITS-Pilani, K.K Birla Goa Campus, Goa, India 403726
| |
Collapse
|
2
|
Carboneau BA, Allan JA, Townsend SE, Kimple ME, Breyer RM, Gannon M. Opposing effects of prostaglandin E 2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation. Mol Metab 2017; 6:548-559. [PMID: 28580285 PMCID: PMC5444094 DOI: 10.1016/j.molmet.2017.04.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Hyperglycemia and systemic inflammation, hallmarks of Type 2 Diabetes (T2D), can induce the production of the inflammatory signaling molecule Prostaglandin E2 (PGE2) in islets. The effects of PGE2 are mediated by its four receptors, E-Prostanoid Receptors 1-4 (EP1-4). EP3 and EP4 play opposing roles in many cell types due to signaling through different G proteins, Gi and GS, respectively. We previously found that EP3 and EP4 expression are reciprocally regulated by activation of the FoxM1 transcription factor, which promotes β-cell proliferation and survival. Our goal was to determine if EP3 and EP4 regulate β-cell proliferation and survival and, if so, to elucidate the downstream signaling mechanisms. METHODS β-cell proliferation was assessed in mouse and human islets ex vivo treated with selective agonists and antagonists for EP3 (sulprostone and DG-041, respectively) and EP4 (CAY10598 and L-161,982, respectively). β-cell survival was measured in mouse and human islets treated with the EP3- and EP4-selective ligands in conjunction with a cytokine cocktail to induce cell death. Changes in gene expression and protein phosphorylation were analyzed in response to modulation of EP3 and EP4 activity in mouse islets. RESULTS Blockade of EP3 enhanced β-cell proliferation in young, but not old, mouse islets in part through phospholipase C (PLC)-γ1 activity. Blocking EP3 also increased human β-cell proliferation. EP4 modulation had no effect on ex vivo proliferation alone. However, blockade of EP3 in combination with activation of EP4 enhanced human, but not mouse, β-cell proliferation. In both mouse and human islets, EP3 blockade or EP4 activation enhanced β-cell survival in the presence of cytokines. EP4 acts in a protein kinase A (PKA)-dependent manner to increase mouse β-cell survival. In addition, the positive effects of FoxM1 activation on β-cell survival are inhibited by EP3 and dependent on EP4 signaling. CONCLUSIONS Our results identify EP3 and EP4 as novel regulators of β-cell proliferation and survival in mouse and human islets ex vivo.
Collapse
Key Words
- COX-2, cyclooxygenase-2
- Cell death
- DAG, diacylglycerol
- EP1-4, E-Prostanoid Receptors 1-4
- GPCR, G protein-coupled receptor
- IP3, inositol 1,4,5-trisphosphate
- PGE2, prostaglandin E2
- PKA, protein kinase A
- PL, placental lactogen
- PLC, phospholipase C
- PT, pertussis toxin
- Pancreatic β-cell
- Proliferation
- Prostaglandin E2
Collapse
Affiliation(s)
- Bethany A Carboneau
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jack A Allan
- School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Michelle E Kimple
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, WI, USA.,William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Richard M Breyer
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Gannon
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.,Program in Developmental Biology, Vanderbilt University, Nashville, TN, USA.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|