1
|
Luci C, Vieira E, Perchet T, Gual P, Golub R. Natural Killer Cells and Type 1 Innate Lymphoid Cells Are New Actors in Non-alcoholic Fatty Liver Disease. Front Immunol 2019; 10:1192. [PMID: 31191550 PMCID: PMC6546848 DOI: 10.3389/fimmu.2019.01192] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity and associated liver diseases (Non Alcoholic Fatty Liver Disease, NAFLD) are a major public health problem with increasing incidence in Western countries (25% of the affected population). These complications develop from a fatty liver (steatosis) to an inflammatory state (steatohepatitis) evolving toward fibrosis and hepatocellular carcinoma. Lipid accumulation in the liver contributes to hepatocyte cell death and promotes liver injury. Local immune cells are activated either by Danger Associated Molecular Patterns (DAMPS) released by dead hepatocytes or by bacterial products (PAMPS) reaching the liver due to increased intestinal permeability. The resulting low-grade inflammatory state promotes the progression of liver complications toward more severe grades. Innate lymphoid cells (ILC) are an heterogeneous family of five subsets including circulating Natural Killer (NK) cells, ILC1, ILC2, ILC3, and lymphocytes tissue-inducer cells (LTi). NK cells and tissue-resident ILCs, mainly located at epithelial surfaces, are prompt to rapidly react to environmental changes to mount appropriate immune responses. Recent works have demonstrated the interplay between ILCs subsets and the environment within metabolic active organs such as liver, adipose tissue and gut during diet-induced obesity leading or not to hepatic abnormalities. Here, we provide an overview of the newly roles of NK cells and ILC1 in metabolism focusing on their contribution to the development of NAFLD. We also discuss recent studies that demonstrate the ability of these two subsets to influence tissue-specific metabolism and how their function and homeostasis are affected during metabolic disorders.
Collapse
Affiliation(s)
- Carmelo Luci
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Elodie Vieira
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Thibaut Perchet
- Unité Lymphopoïèse, Institut Pasteur, INSERM U1223, Université Paris Diderot, Paris, France
| | - Philippe Gual
- Université Côte d'Azur, INSERM, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Rachel Golub
- Unité Lymphopoïèse, Institut Pasteur, INSERM U1223, Université Paris Diderot, Paris, France
| |
Collapse
|
2
|
Beuraud C, Lombardi V, Luce S, Horiot S, Naline E, Neukirch C, Airouche S, Perchet T, Golub R, Devillier P, Chollet‐Martin S, Baron‐Bodo V, Nony E, Aubier M, Mascarell L, Moingeon P. CCR10 + ILC2s with ILC1-like properties exhibit a protective function in severe allergic asthma. Allergy 2019; 74:933-943. [PMID: 30475388 DOI: 10.1111/all.13679] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/09/2018] [Accepted: 09/11/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND We previously showed that patients with severe allergic asthma have high numbers of circulating ILC2s expressing CCR10. METHOD Herein, CCR10+ ILC2s were further analyzed in the blood of healthy individuals or patients with allergic and non-allergic asthma. Characteristics of human CCR10+ and CCR10- ILC2s were assessed by flow cytometry as well as single-cell multiplex RT-qPCR. The role of CCR10+ ILC2s in asthma pathophysiology was studied in allergen-treated mice. RESULTS When compared to healthy controls, CCR10+ ILC2s are enriched in the blood of both allergic and non-allergic severe asthmatic patients, and these cells are recruited to the lungs. Plasma concentrations of the CCR10 ligand CCL27 are significantly increased in severe asthmatics when compared to non-asthmatic patients. CCR10+ ILC2s secrete little TH 2 cytokines, but exhibit ILC1-like properties, including a capacity to produce IFN-γ. Also, single-cell analysis reveals that the CCR10+ ILC2 subset is enriched in cells expressing amphiregulin. CCR10+ ILC2 depletion, as well as blocking of IFN-γ activity, exacerbates airway hyperreactivity in allergen-challenged mice, providing evidence for a protective role of these cells in allergic inflammation. CONCLUSIONS Frequencies of circulating CCR10+ ILC2s and CCL27 plasma concentrations represent candidate markers of asthma severity. The characterization of CCR10+ ILC2s in human samples and in mouse asthma models suggests that these cells downregulate allergic inflammation through IFN-γ production.
Collapse
Affiliation(s)
- Chloé Beuraud
- Research Department Stallergenes Greer Antony France
| | | | - Sonia Luce
- Research Department Stallergenes Greer Antony France
| | | | - Emmanuel Naline
- UPRES EA 220 Airway Disease Department Foch Hospital University Paris‐Saclay Suresnes France
| | - Catherine Neukirch
- Department of Pulmonary Medicine Bichat Hospital Faculty of Medicine Paris Diderot University INSERM UMR1152 Paris France
| | - Sabi Airouche
- Research Department Stallergenes Greer Antony France
| | - Thibaut Perchet
- Unit for Lymphopoiesis Immunology Department INSERM U1223 Institut Pasteur Paris France
| | - Rachel Golub
- Unit for Lymphopoiesis Immunology Department INSERM U1223 Institut Pasteur Paris France
| | - Philippe Devillier
- UPRES EA 220 Airway Disease Department Foch Hospital University Paris‐Saclay Suresnes France
| | | | | | - Emmanuel Nony
- Research Department Stallergenes Greer Antony France
| | - Michel Aubier
- Department of Pulmonary Medicine Bichat Hospital Faculty of Medicine Paris Diderot University INSERM UMR1152 Paris France
| | | | | |
Collapse
|
3
|
Sreejith KR, Ooi CH, Jin J, Dao DV, Nguyen NT. Digital polymerase chain reaction technology - recent advances and future perspectives. LAB ON A CHIP 2018; 18:3717-3732. [PMID: 30402632 DOI: 10.1039/c8lc00990b] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Digital polymerase chain reaction (dPCR) technology has remained a "hot topic" in the last two decades due to its potential applications in cell biology, genetic engineering, and medical diagnostics. Various advanced techniques have been reported on sample dispersion, thermal cycling and output monitoring of digital PCR. However, a fully automated, low-cost and handheld digital PCR platform has not been reported in the literature. This paper attempts to critically evaluate the recent developments in techniques for sample dispersion, thermal cycling and output evaluation for dPCR. The techniques are discussed in terms of hardware simplicity, portability, cost-effectiveness and suitability for automation. The present paper also discusses the research gaps observed in each step of dPCR and concludes with possible improvements toward portable, low-cost and automatic digital PCR systems.
Collapse
Affiliation(s)
- Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, 4111 Queensland, Australia.
| | | | | | | | | |
Collapse
|
4
|
Perchet T, Petit M, Banchi EG, Meunier S, Cumano A, Golub R. The Notch Signaling Pathway Is Balancing Type 1 Innate Lymphoid Cell Immune Functions. Front Immunol 2018; 9:1252. [PMID: 29930552 PMCID: PMC5999736 DOI: 10.3389/fimmu.2018.01252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/18/2018] [Indexed: 01/08/2023] Open
Abstract
The Notch pathway is one of the canonical signaling pathways implicated in the development of various solid tumors. During carcinogenesis, the Notch pathway dysregulation induces tumor expression of Notch receptor ligands participating to escape the immune surveillance. The Notch pathway conditions both the development and the functional regulation of lymphoid subsets. Its importance on T cell subset polarization has been documented contrary to its action on innate lymphoid cells (ILC). We aim to analyze the effect of the Notch pathway on type 1 ILC polarization and functions after disruption of the RBPJk-dependent Notch signaling cascade. Indeed, type 1 ILC comprises conventional NK (cNK) cells and type 1 helper innate lymphoid cells (ILC1) that share Notch-related functional characteristics such as the IFNg secretion downstream of T-bet expression. cNK cells have strong antitumor properties. However, data are controversial concerning ILC1 functions during carcinogenesis with models showing antitumoral capacities and others reporting ILC1 inability to control tumor growth. Using various mouse models of Notch signaling pathway depletion, we analyze the effects of its absence on type 1 ILC differentiation and cytotoxic functions. We also provide clues into its role in the maintenance of immune homeostasis in tissues. We show that modulating the Notch pathway is not only acting on tumor-specific T cell activity but also on ILC immune subset functions. Hence, our study uncovers the intrinsic Notch signaling pathway in ILC1/cNK populations and their response in case of abnormal Notch ligand expression. This study help evaluating the possible side effects mediated by immune cells different from T cells, in case of multivalent forms of the Notch receptor ligand delta 1 treatments. In definitive, it should help determining the best novel combination of therapeutic strategies in case of solid tumors.
Collapse
Affiliation(s)
- Thibaut Perchet
- Unit for Lymphopoiesis, Department of Immunology, Pasteur Institute, Paris, France.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Maxime Petit
- Unit for Lymphopoiesis, Department of Immunology, Pasteur Institute, Paris, France.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Elena-Gaia Banchi
- Unit for Lymphopoiesis, Department of Immunology, Pasteur Institute, Paris, France.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Sylvain Meunier
- Unit for Lymphopoiesis, Department of Immunology, Pasteur Institute, Paris, France.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Ana Cumano
- Unit for Lymphopoiesis, Department of Immunology, Pasteur Institute, Paris, France.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Rachel Golub
- Unit for Lymphopoiesis, Department of Immunology, Pasteur Institute, Paris, France.,INSERM U1223, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| |
Collapse
|