1
|
Moreno-Paz M, dos Santos Severino RS, Sánchez-García L, Manchado JM, García-Villadangos M, Aguirre J, Fernández-Martínez MA, Carrizo D, Kobayashi L, Dave A, Warren-Rhodes K, Davila A, Stoker CR, Glass B, Parro V. Life Detection and Microbial Biomarker Profiling with Signs of Life Detector-Life Detector Chip During a Mars Drilling Simulation Campaign in the Hyperarid Core of the Atacama Desert. ASTROBIOLOGY 2023; 23:1259-1283. [PMID: 37930382 PMCID: PMC10825288 DOI: 10.1089/ast.2021.0174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/02/2023] [Indexed: 11/07/2023]
Abstract
The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.
Collapse
Affiliation(s)
- Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Rita Sofia dos Santos Severino
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Departament of Física y Matemáticas y de Automática, University of Alcalá de Henares (UAH), Madrid, Spain
| | - Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Juan Manuel Manchado
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | | | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Miguel Angel Fernández-Martínez
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| | - Daniel Carrizo
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| | - Linda Kobayashi
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Arwen Dave
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Kim Warren-Rhodes
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
- Carl Sagan Center, SETI Institute, Mountain View, California, USA
| | - Alfonso Davila
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Carol R. Stoker
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Brian Glass
- Space Science Division and Astrobiology Division, NASA Ames Research Center, Moffett Field, California, USA
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CAB), INTA-CSIC, Madrid, Spain
| |
Collapse
|
2
|
Lezcano MÁ, Moreno-Paz M, Carrizo D, Prieto-Ballesteros O, Fernández-Martínez MÁ, Sánchez-García L, Blanco Y, Puente-Sánchez F, de Diego-Castilla G, García-Villadangos M, Fairén AG, Parro V. Biomarker Profiling of Microbial Mats in the Geothermal Band of Cerro Caliente, Deception Island (Antarctica): Life at the Edge of Heat and Cold. ASTROBIOLOGY 2019; 19:1490-1504. [PMID: 31339746 PMCID: PMC6918857 DOI: 10.1089/ast.2018.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/15/2019] [Indexed: 05/04/2023]
Abstract
Substrate-atmosphere interfaces in Antarctic geothermal environments are hot-cold regions that constitute thin habitable niches for microorganisms with possible counterparts in ancient Mars. Cerro Caliente hill in Deception Island (active volcano in the South Shetland Islands) is affected by ascending hydrothermal fluids that form a band of warm substrates buffered by low air temperatures. We investigated the influence of temperature on the community structure and metabolism of three microbial mats collected along the geothermal band of Cerro Caliente registering 88°C, 8°C, and 2°C at the time of collection. High-throughput sequencing of small subunit ribosomal ribonucleic acid (SSU rRNA) genes and Life Detector Chip (LDChip) microarray immunoassays revealed different bacterial, archaeal, and eukaryotic composition in the three mats. The mat at 88°C showed the less diverse microbial community and a higher proportion of thermophiles (e.g., Thermales). In contrast, microbial communities in the mats at 2°C and 8°C showed relatively higher diversity and higher proportion of psychrophiles (e.g., Flavobacteriales). Despite this overall association, similar microbial structures at the phylum level (particularly the presence of Cyanobacteria) and certain hot- and cold-tolerant microorganisms were identified in the three mats. Daily thermal oscillations recorded in the substrate over the year (4.5-76°C) may explain the coexistence of microbial fingerprints with different thermal tolerances. Stable isotope composition also revealed metabolic differences among the microbial mats. Carbon isotopic ratios suggested the Calvin-Benson-Bassham cycle as the major pathway for carbon dioxide fixation in the mats at 2°C and 8°C, and the reductive tricarboxylic acid cycle and/or the 3-hydroxypropionate bicycle for the mat at 88°C, indicating different metabolisms as a function of the prevailing temperature of each mat. The comprehensive biomarker profile on the three microbial mats from Cerro Caliente contributes to unravel the diversity, composition, and metabolism in geothermal polar sites and highlights the relevance of geothermal-cold environments to create habitable niches with interest in other planetary environments.
Collapse
Affiliation(s)
- María Ángeles Lezcano
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Mercedes Moreno-Paz
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Daniel Carrizo
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Olga Prieto-Ballesteros
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | - Laura Sánchez-García
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | | | | | - Alberto G. Fairén
- Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York, USA
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| |
Collapse
|
3
|
Fernández-Martínez MÁ, dos Santos Severino R, Moreno-Paz M, Gallardo-Carreño I, Blanco Y, Warren-Rhodes K, García-Villadangos M, Ruiz-Bermejo M, Barberán A, Wettergreen D, Cabrol N, Parro V. Prokaryotic Community Structure and Metabolisms in Shallow Subsurface of Atacama Desert Playas and Alluvial Fans After Heavy Rains: Repairing and Preparing for Next Dry Period. Front Microbiol 2019; 10:1641. [PMID: 31396176 PMCID: PMC6668633 DOI: 10.3389/fmicb.2019.01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
The Atacama Desert, the oldest and driest desert on Earth, displays significant rains only once per decade. To investigate how microbial communities take advantage of these sporadic wet events, we carried out a geomicrobiological study a few days after a heavy rain event in 2015. Different physicochemical and microbial community analyses were conducted on samples collected from playas and an alluvial fan from surface, 10, 20, 50, and 80 cm depth. Gravimetric moisture content peaks were measured in 10 and 20 cm depth samples (from 1.65 to 4.1% w/w maximum values) while, in general, main anions such as chloride, nitrate, and sulfate concentrations increased with depth, with maximum values of 13-1,125; 168-10,109; and 9,904-30,952 ppm, respectively. Small organic anions such as formate and acetate had maximum concentrations from 2.61 to 3.44 ppm and 6.73 to 28.75 ppm, respectively. Microbial diversity inferred from DNA analysis showed Actinobacteria and Alphaproteobacteria as the most abundant and widespread bacterial taxa among the samples, followed by Chloroflexi and Firmicutes at specific sites. Archaea were mainly dominated by Nitrososphaerales, Methanobacteria, with the detection of other groups such as Halobacteria. Metaproteomics showed a high and even distribution of proteins involved in primary metabolic processes such as energy production and biosynthetic pathways, and a limited but remarkable presence of proteins related to resistance to environmental stressors such as radiation, oxidation, or desiccation. The results indicated that extra humidity in the system allows the microbial community to repair, and prepare for the upcoming hyperarid period. Additionally, it supplies biomarkers to the medium whose preservation potential could be high under strong desiccation conditions and relevant for planetary exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Kimberley Warren-Rhodes
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | | | | | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - David Wettergreen
- Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, United States
| | - Nathalie Cabrol
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | - Víctor Parro
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
| |
Collapse
|
4
|
Parro V, Puente-Sánchez F, Cabrol NA, Gallardo-Carreño I, Moreno-Paz M, Blanco Y, García-Villadangos M, Tambley C, Tilot VC, Thompson C, Smith E, Sobrón P, Demergasso CS, Echeverría-Vega A, Fernández-Martínez MÁ, Whyte LG, Fairén AG. Microbiology and Nitrogen Cycle in the Benthic Sediments of a Glacial Oligotrophic Deep Andean Lake as Analog of Ancient Martian Lake-Beds. Front Microbiol 2019; 10:929. [PMID: 31130930 PMCID: PMC6509559 DOI: 10.3389/fmicb.2019.00929] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Potential benthic habitats of early Mars lakes, probably oligotrophic, could range from hydrothermal to cold sediments. Dynamic processes in the water column (such as turbidity or UV penetration) as well as in the benthic bed (temperature gradients, turbation, or sedimentation rate) contribute to supply nutrients to a potential microbial ecosystem. High altitude, oligotrophic, and deep Andean lakes with active deglaciation processes and recent or past volcanic activity are natural models to assess the feasibility of life in other planetary lake/ocean environments and to develop technology for their exploration. We sampled the benthic sediments (down to 269 m depth) of the oligotrophic lake Laguna Negra (Central Andes, Chile) to investigate its ecosystem through geochemical, biomarker profiling, and molecular ecology studies. The chemistry of the benthic water was similar to the rest of the water column, except for variable amounts of ammonium (up to 2.8 ppm) and nitrate (up to 0.13 ppm). A life detector chip with a 300-antibody microarray revealed the presence of biomass in the form of exopolysaccharides and other microbial markers associated to several phylogenetic groups and potential microaerobic and anaerobic metabolisms such as nitrate reduction. DNA analyses showed that 27% of the Archaea sequences corresponded to a group of ammonia-oxidizing archaea (AOA) similar (97%) to Nitrosopumilus spp. and Nitrosoarchaeum spp. (Thaumarchaeota), and 4% of Bacteria sequences to nitrite-oxidizing bacteria from the Nitrospira genus, suggesting a coupling between ammonia and nitrite oxidation. Mesocosm experiments with the specific AOA inhibitor 2-Phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO) demonstrated an AOA-associated ammonia oxidation activity with the simultaneous accumulation of nitrate and sulfate. The results showed a rich benthic microbial community dominated by microaerobic and anaerobic metabolisms thriving under aphotic, low temperature (4°C), and relatively high pressure, that might be a suitable terrestrial analog of other planetary settings.
Collapse
Affiliation(s)
- Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | | | - Nathalie A. Cabrol
- SETI Institute, Carl Sagan Center, Mountain View, CA, United States
- NASA Ames Research Center, Mountain View, CA, United States
| | | | | | | | | | | | - Virginie C. Tilot
- Instituto Español de Oceanografía (IEO), Málaga, Spain
- Muséum National d’Histoire Naturelle, Paris, France
| | - Cody Thompson
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Eric Smith
- SETI Institute, Carl Sagan Center, Mountain View, CA, United States
| | - Pablo Sobrón
- SETI Institute, Carl Sagan Center, Mountain View, CA, United States
| | | | - Alex Echeverría-Vega
- Centro de Biotecnología, Universidad Católica del Norte, Antofagasta, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | | | - Lyle G. Whyte
- Department of Natural Resource Sciences, McGill University, Montreal, QC, Canada
| | - Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY, United States
| |
Collapse
|