1
|
Macdonald AR, Charlton F, Corrigan DK. Accelerating the development of implantable neurochemical biosensors by using existing clinically applied depth electrodes. Anal Bioanal Chem 2023; 415:1137-1147. [PMID: 36456747 PMCID: PMC9899734 DOI: 10.1007/s00216-022-04445-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/05/2022]
Abstract
In this study, an implantable stereo-electroencephalography (sEEG) depth electrode was functionalised with an enzyme coating for enzyme-based biosensing of glucose and L-glutamate. This was done because personalised medicine could benefit from active real-time neurochemical monitoring on small spatial and temporal scales to further understand and treat neurological disorders. To achieve this, the sEEG depth electrode was characterised using cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) using several electrochemical redox mediators (potassium ferri/ferrocyanide, ruthenium hexamine chloride, and dopamine). To improve performance, the Pt sensors on the sEEG depth electrode were coated with platinum black and a crosslinked gelatin-enzyme film to enable enzymatic biosensing. This characterisation work showed that producing a useable electrode with a good electrochemical response showing the expected behaviour for a platinum electrode was possible. Coating with Pt black improved the sensitivity to H2O2 over unmodified electrodes and approached that of well-defined Pt macro disc electrodes. Measured current showed good dependence on concentration, and the calibration curves report good sensitivity of 29.65 nA/cm2/μM for glucose and 8.05 nA/cm2/μM for L-glutamate with a stable, repeatable, and linear response. These findings demonstrate that existing clinical electrode devices can be adapted for combined electrochemical and electrophysiological measurement in patients and obviate the need to develop new electrodes when existing clinically approved devices and the associated knowledge can be reused. This accelerates the time to use and application of in vivo and wearable biosensing for diagnosis, treatment, and personalised medicine.
Collapse
Affiliation(s)
- Alexander R Macdonald
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow, UK
| | - Francessca Charlton
- Department of Biomedical Engineering, University of Strathclyde, 106 Rottenrow East, Glasgow, UK
| | - Damion K Corrigan
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, UK.
| |
Collapse
|
2
|
Differential Effects of Human P301L Tau Expression in Young versus Aged Mice. Int J Mol Sci 2021; 22:ijms222111637. [PMID: 34769068 PMCID: PMC8583766 DOI: 10.3390/ijms222111637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
The greatest risk factor for developing Alzheimer’s disease (AD) is increasing age. Understanding the changes that occur in aging that make an aged brain more susceptible to developing AD could result in novel therapeutic targets. In order to better understand these changes, the current study utilized mice harboring a regulatable mutant P301L human tau transgene (rTg(TauP301L)4510), in which P301L tau expression can be turned off or on by the addition or removal of doxycycline in the drinking water. This regulatable expression allowed for assessment of aging independent of prolonged mutant tau expression. Our results suggest that P301L expression in aged mice enhances memory deficits in the Morris water maze task. These behavioral changes may be due to enhanced late-stage tau pathology, as evidenced by immunoblotting and exacerbated hippocampal dysregulation of glutamate release and uptake measured by the microelectrode array technique. We additionally observed changes in proteins important for the regulation of glutamate and tau phosphorylation that may mediate these age-related changes. Thus, age and P301L tau interact to exacerbate tau-induced detrimental alterations in aged animals.
Collapse
|
3
|
Talebi M, Esmaeeli H, Talebi M, Farkhondeh T, Samarghandian S. A Concise Overview of Biosensing Technologies for the Detection of Alzheimer's Disease Biomarkers. Curr Pharm Biotechnol 2021; 23:634-644. [PMID: 34250871 DOI: 10.2174/2666796702666210709122407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/30/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a brain-linked pathophysiological condition with neuronal degeneration, cognition dysfunctions, and other debilitations. Due to the growing prevalence of AD, there is a highly commended tendency to accelerate and develop analytical technologies for easy, cost-effective, and sensitive detection of AD biomarkers. In the last decade, remarkable advancements have been achieved on the gate to the progression of biosensors, predominantly optical and electrochemical, to detect AD biomarkers. Biosensors are commanding analytical devices that can conduct biological responses on transducers into measurable signals. These analytical devices can assist the case finding and management of AD. This review focuses on up-to-date developments, contests, and tendencies regarding AD biosensing principally, emphasizing the exclusive possessions of nanomaterials.
Collapse
Affiliation(s)
- Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Hadi Esmaeeli
- Department of Research & Development, Niak Pharmaceutical Co., Gorgan. Iran
| | - Mohsen Talebi
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, United States
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand. Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur. Iran
| |
Collapse
|
4
|
Banerjee S, McCracken S, Hossain MF, Slaughter G. Electrochemical Detection of Neurotransmitters. BIOSENSORS 2020; 10:E101. [PMID: 32824869 PMCID: PMC7459656 DOI: 10.3390/bios10080101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/15/2023]
Abstract
Neurotransmitters are important chemical messengers in the nervous system that play a crucial role in physiological and physical health. Abnormal levels of neurotransmitters have been correlated with physical, psychotic, and neurodegenerative diseases such as Alzheimer's, Parkinson's, dementia, addiction, depression, and schizophrenia. Although multiple neurotechnological approaches have been reported in the literature, the detection and monitoring of neurotransmitters in the brain remains a challenge and continues to garner significant attention. Neurotechnology that provides high-throughput, as well as fast and specific quantification of target analytes in the brain, without negatively impacting the implanted region is highly desired for the monitoring of the complex intercommunication of neurotransmitters. Therefore, it is crucial to develop clinical assessment techniques that are sensitive and reliable to monitor and modulate these chemical messengers and screen diseases. This review focuses on summarizing the current electrochemical measurement techniques that are capable of sensing neurotransmitters with high temporal resolution in real time. Advanced neurotransmitter sensing platforms that integrate nanomaterials and biorecognition elements are explored.
Collapse
Affiliation(s)
| | | | | | - Gymama Slaughter
- Frank Reidy Research Center for Bioelectrics, Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23508, USA; (S.B.); (S.M.); (M.F.H.)
| |
Collapse
|
5
|
Krishna G, Beitchman JA, Bromberg CE, Currier Thomas T. Approaches to Monitor Circuit Disruption after Traumatic Brain Injury: Frontiers in Preclinical Research. Int J Mol Sci 2020; 21:ijms21020588. [PMID: 31963314 PMCID: PMC7014469 DOI: 10.3390/ijms21020588] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/03/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) often results in pathophysiological damage that can manifest as both acute and chronic neurological deficits. In an attempt to repair and reconnect disrupted circuits to compensate for loss of afferent and efferent connections, maladaptive circuitry is created and contributes to neurological deficits, including post-concussive symptoms. The TBI-induced pathology physically and metabolically changes the structure and function of neurons associated with behaviorally relevant circuit function. Complex neurological processing is governed, in part, by circuitry mediated by primary and modulatory neurotransmitter systems, where signaling is disrupted acutely and chronically after injury, and therefore serves as a primary target for treatment. Monitoring of neurotransmitter signaling in experimental models with technology empowered with improved temporal and spatial resolution is capable of recording in vivo extracellular neurotransmitter signaling in behaviorally relevant circuits. Here, we review preclinical evidence in TBI literature that implicates the role of neurotransmitter changes mediating circuit function that contributes to neurological deficits in the post-acute and chronic phases and methods developed for in vivo neurochemical monitoring. Coupling TBI models demonstrating chronic behavioral deficits with in vivo technologies capable of real-time monitoring of neurotransmitters provides an innovative approach to directly quantify and characterize neurotransmitter signaling as a universal consequence of TBI and the direct influence of pharmacological approaches on both behavior and signaling.
Collapse
Affiliation(s)
- Gokul Krishna
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Joshua A. Beitchman
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Caitlin E. Bromberg
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Theresa Currier Thomas
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ 85016, USA; (G.K.); (J.A.B.); (C.E.B.)
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
- Phoenix VA Healthcare System, Phoenix, AZ 85012, USA
- Correspondence: ; Tel.: +1-602-827-2348
| |
Collapse
|
6
|
Mattingly M, Weineck K, Costa J, Cooper RL. Hyperpolarization by activation of halorhodopsin results in enhanced synaptic transmission: Neuromuscular junction and CNS circuit. PLoS One 2018; 13:e0200107. [PMID: 29969493 PMCID: PMC6029800 DOI: 10.1371/journal.pone.0200107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Optogenetics offers a unique method to regulate the activity of select neural circuits. However, the electrophysiological consequences of targeted optogenetic manipulation upon the entire circuit remain poorly understood. Analysis of the sensory-CNS-motor circuit in Drosophila larvae expressing eHpHR and ChR2-XXL revealed unexpected patterns of excitability. Optical stimulation of motor neurons targeted to express eNpHR resulted in inhibition followed by excitation of body wall contraction with repetitive stimulation in intact larvae. In situ preparations with direct electrophysiological measures showed an increased responsiveness to excitatory synaptic activity induced by sensory stimulation within a functional neural circuit. To ensure proper function of eNpHR and ChR2-XXL they were expressed in body wall muscle and direct electrophysiological measurements were obtained. Under eNpHR induced hyperpolarization the muscle remained excitable with increased amplitude of excitatory postsynaptic synaptic potentials. Theoretical models to explain the observations are presented. This study aids in increasing the understanding of the varied possible influences with light activated proteins within intact neural circuits.
Collapse
Affiliation(s)
- Matthew Mattingly
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kristin Weineck
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Jennifer Costa
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Robin L. Cooper
- Department of Biology and Center for Muscle Biology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
7
|
Geyer ED, Shetty PA, Suozzi CJ, Allen DZ, Benavidez PP, Liu J, Hollis CN, Gerhardt GA, Quintero JE, Burmeister JJ, Whitaker EE. Adaptation of Microelectrode Array Technology for the Study of Anesthesia-induced Neurotoxicity in the Intact Piglet Brain. J Vis Exp 2018. [PMID: 29806825 PMCID: PMC6101183 DOI: 10.3791/57391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Every year, millions of children undergo anesthesia for a multitude of procedures. However, studies in both animals and humans have called into question the safety of anesthesia in children, implicating anesthetics as potentially toxic to the brain in development. To date, no studies have successfully elucidated the mechanism(s) by which anesthesia may be neurotoxic. Animal studies allow investigation of such mechanisms, and neonatal piglets represent an excellent model to study these effects due to their striking developmental similarities to the human brain. This protocol adapts the use of enzyme-based microelectrode array (MEA) technology as a novel way to study the mechanism(s) of anesthesia-induced neurotoxicity (AIN). MEAs enable real-time monitoring of in vivo neurotransmitter activity and offer exceptional temporal and spatial resolution. It is hypothesized that anesthetic neurotoxicity is caused in part by glutamate dysregulation and MEAs offer a method to measure glutamate. The novel implementation of MEA technology in a piglet model presents a unique opportunity for the study of AIN.
Collapse
Affiliation(s)
- Emily D Geyer
- Department of Anesthesiology, Ohio State University College of Medicine
| | - Prithvi A Shetty
- Department of Anesthesiology, Ohio State University College of Medicine
| | | | - David Z Allen
- Department of Anesthesiology, Ohio State University College of Medicine; Medical Student Research Program, Ohio State University College of Medicine
| | - Pamela P Benavidez
- Department of Anesthesiology, Ohio State University College of Medicine; Medical Student Research Program, Ohio State University College of Medicine
| | - Joseph Liu
- Department of Anesthesiology, Ohio State University College of Medicine; Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital
| | - Charles N Hollis
- Department of Anesthesiology, Ohio State University College of Medicine
| | - Greg A Gerhardt
- Department of Neuroscience, University of Kentucky Medical Center
| | - Jorge E Quintero
- Department of Neuroscience, University of Kentucky Medical Center
| | | | - Emmett E Whitaker
- Department of Anesthesiology, Ohio State University College of Medicine; Department of Anesthesiology and Pain Medicine, Nationwide Children's Hospital;
| |
Collapse
|