1
|
Lorzadeh A, Ye G, Sharma S, Jadhav U. DNA methylation-dependent and -independent binding of CDX2 directs activation of distinct developmental and homeostatic genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579850. [PMID: 38405700 PMCID: PMC10888781 DOI: 10.1101/2024.02.11.579850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Precise spatiotemporal and cell type-specific gene expression is essential for proper tissue development and function. Transcription factors (TFs) guide this process by binding to developmental stage-specific targets and establishing an appropriate enhancer landscape. In turn, DNA and chromatin modifications direct the genomic binding of TFs. However, how TFs navigate various chromatin features and selectively bind a small portion of the millions of possible genomic target loci is still not well understood. Here we show that Cdx2 - a pioneer TF that binds distinct targets in developing versus adult intestinal epithelial cells - has a preferential affinity for a non-canonical CpG-containing motif in vivo. A higher frequency of this motif at embryonic and fetal Cdx2 target loci and the specifically methylated state of the CpG during development allows selective Cdx2 binding and activation of developmental enhancers and linked genes. Conversely, demethylation at these enhancers prohibits ectopic Cdx2 binding in adult cells, where Cdx2 binds its canonical motif without a CpG. This differential Cdx2 binding allows for corecruitment of Ctcf and Hnf4, facilitating the establishment of intestinal superenhancers during development and enhancers mediating adult homeostatic functions, respectively. Induced gain of DNA methylation in the adult mouse epithelium or cultured cells causes ectopic recruitment of Cdx2 to the developmental target loci and facilitates cobinding of the partner TFs. Together, our results demonstrate that the differential CpG motif requirements for Cdx2 binding to developmental versus adult target sites allow it to navigate different DNA methylation profiles and activate cell type-specific genes at appropriate times.
Collapse
Affiliation(s)
- Alireza Lorzadeh
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - George Ye
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Sweta Sharma
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| | - Unmesh Jadhav
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USC
| |
Collapse
|
2
|
Ramirez M, Badayeva Y, Yeung J, Wu J, Abdalla-Wyse A, Yang E, Trost B, Scherer SW, Goldowitz D. Temporal analysis of enhancers during mouse cerebellar development reveals dynamic and novel regulatory functions. eLife 2022; 11:74207. [PMID: 35942939 PMCID: PMC9398453 DOI: 10.7554/elife.74207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
We have identified active enhancers in the mouse cerebellum at embryonic and postnatal stages which provides a view of novel enhancers active during cerebellar development. The majority of cerebellar enhancers have dynamic activity between embryonic and postnatal development. Cerebellar enhancers were enriched for neural transcription factor binding sites with temporally specific expression. Putative gene targets displayed spatially restricted expression patterns, indicating cell-type specific expression regulation. Functional analysis of target genes indicated that enhancers regulate processes spanning several developmental epochs such as specification, differentiation and maturation. We use these analyses to discover one novel regulator and one novel marker of cerebellar development: Bhlhe22 and Pax3, respectively. We identified an enrichment of de novo mutations and variants associated with autism spectrum disorder in cerebellar enhancers. Furthermore, by comparing our data with relevant brain development ENCODE histone profiles and cerebellar single-cell datasets we have been able to generalize and expand on the presented analyses, respectively. We have made the results of our analyses available online in the Developing Mouse Cerebellum Enhancer Atlas (https://goldowitzlab.shinyapps.io/developing_mouse_cerebellum_enhancer_atlas/), where our dataset can be efficiently queried, curated and exported by the scientific community to facilitate future research efforts. Our study provides a valuable resource for studying the dynamics of gene expression regulation by enhancers in the developing cerebellum and delivers a rich dataset of novel gene-enhancer associations providing a basis for future in-depth studies in the cerebellum.
Collapse
Affiliation(s)
- Miguel Ramirez
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
| | - Yuliya Badayeva
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
| | - Joanna Yeung
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
| | - Joshua Wu
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
| | - Ayasha Abdalla-Wyse
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
| | - Erin Yang
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
| | -
- Department of Molecular Genetics, Hospital for Sick Children, Toronto, Canada
| | - Brett Trost
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada
| | - Stephen W Scherer
- Department of Molecular Genetics, Hospital for Sick Children, Toronto, Canada
| | - Daniel Goldowitz
- Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital, Vancouver, Canada
| |
Collapse
|
3
|
Lorzadeh A, Hammond C, Wang F, Knapp DJHF, Wong JC, Zhu JYA, Cao Q, Heravi-Moussavi A, Carles A, Wong M, Sharafian Z, Steif J, Moksa M, Bilenky M, Lavoie PM, Eaves CJ, Hirst M. Polycomb contraction differentially regulates terminal human hematopoietic differentiation programs. BMC Biol 2022; 20:104. [PMID: 35550087 PMCID: PMC9102747 DOI: 10.1186/s12915-022-01315-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Lifelong production of the many types of mature blood cells from less differentiated progenitors is a hierarchically ordered process that spans multiple cell divisions. The nature and timing of the molecular events required to integrate the environmental signals, transcription factor activity, epigenetic modifications, and changes in gene expression involved are thus complex and still poorly understood. To address this gap, we generated comprehensive reference epigenomes of 8 phenotypically defined subsets of normal human cord blood. Results We describe a striking contraction of H3K27me3 density in differentiated myelo-erythroid cells that resembles a punctate pattern previously ascribed to pluripotent embryonic stem cells. Phenotypically distinct progenitor cell types display a nearly identical repressive H3K27me3 signature characterized by large organized chromatin K27-modification domains that are retained by mature lymphoid cells but lost in terminally differentiated monocytes and erythroblasts. We demonstrate that inhibition of polycomb group members predicted to control large organized chromatin K27-modification domains influences lymphoid and myeloid fate decisions of primary neonatal hematopoietic progenitors in vitro. We further show that a majority of active enhancers appear in early progenitors, a subset of which are DNA hypermethylated and become hypomethylated and induced during terminal differentiation. Conclusion Primitive human hematopoietic cells display a unique repressive H3K27me3 signature that is retained by mature lymphoid cells but is lost in monocytes and erythroblasts. Intervention data implicate that control of this chromatin state change is a requisite part of the process whereby normal human hematopoietic progenitor cells make lymphoid and myeloid fate decisions. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01315-1.
Collapse
Affiliation(s)
- A Lorzadeh
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - C Hammond
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada
| | - F Wang
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medical Genetics, UBC, Vancouver, Canada
| | - D J H F Knapp
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada
| | - J Ch Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - J Y A Zhu
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Q Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - A Heravi-Moussavi
- Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada
| | - A Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Wong
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - Z Sharafian
- BC Children's Hospital Research Institute, Department of Pediatrics, UBC, Vancouver, Canada
| | - J Steif
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada
| | - M Bilenky
- Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada
| | - P M Lavoie
- BC Children's Hospital Research Institute, Department of Pediatrics, UBC, Vancouver, Canada
| | - C J Eaves
- Terry Fox Laboratory, BC Cancer, Vancouver, Canada.,Department of Medicine, UBC, Vancouver, Canada.,Department of Medical Genetics, UBC, Vancouver, Canada
| | - M Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, UBC, Vancouver, Canada. .,Canada's Michael Smith Genome Science Centre, BC Cancer, Vancouver, Canada.
| |
Collapse
|
4
|
Synthetic modeling reveals HOXB genes are critical for the initiation and maintenance of human leukemia. Nat Commun 2019; 10:2913. [PMID: 31266935 PMCID: PMC6606637 DOI: 10.1038/s41467-019-10510-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 05/15/2019] [Indexed: 12/23/2022] Open
Abstract
Mechanistic studies in human cancer have relied heavily on cell lines and mouse models, but are limited by in vitro adaptation and species context issues, respectively. More recent efforts have utilized patient-derived xenografts; however, these are hampered by variable genetic background, inability to study early events, and practical issues with availability/reproducibility. We report here an efficient, reproducible model of T-cell leukemia in which lentiviral transduction of normal human cord blood yields aggressive leukemia that appears indistinguishable from natural disease. We utilize this synthetic model to uncover a role for oncogene-induced HOXB activation which is operative in leukemia cells-of-origin and persists in established tumors where it defines a novel subset of patients distinct from other known genetic subtypes and with poor clinical outcome. We show further that anterior HOXB genes are specifically activated in human T-ALL by an epigenetic mechanism and confer growth advantage in both pre-leukemia cells and established clones.
Collapse
|