1
|
Zhang SL, Wong AWJ. A novel technique for atraumatic transurethral catheterisation of male rats. Biol Open 2024; 13:bio060476. [PMID: 39212100 PMCID: PMC11381925 DOI: 10.1242/bio.060476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Transurethral catheterisation of male rats is technically difficult owing to anatomical peculiarities. In the male rat, the urethral striated sphincter consists of two lateral fascicles separated by an anterior and a posterior strip of connective tissue, which impedes the smooth insertion of a urinary catheter. For rat studies requiring continuous collection of urine, bladder irrigation, or measurement of bladder pressure, investigators either have to exclude the male population (be limited to the female population) or perform percutaneous (suprapubic) bladder puncture in male rats, which is more traumatic and invasive than transurethral catheterisation. This paper describes a novel, atraumatic method of transurethral catheterisation in the male rat, with the aid of a microscope and microsurgical instruments. Six Wistar rats were used for this experiment, all of which were catheterised successfully, with no evidence of bladder or urethral injury. The study shows that male rats can be safely catheterised via the urethra with the aid of a microscope and microsurgical instruments for both visual and tactile feedback. This is a relatively straightforward technique to learn and can allow for inclusion of male rats in future studies requiring urinary analysis or bladder irrigation, without the need for traumatic percutaneous (suprapubic) bladder puncture.
Collapse
Affiliation(s)
- Steven Liben Zhang
- Plastic, Reconstructive and Aesthetic Surgery Service, Department of General Surgery, Woodlands Health, Singapore 737628, Singapore
| | - Allen Wei-Jiat Wong
- Plastic, Reconstructive & Aesthetic Surgery Service, Sengkang General Hospital, Singapore 544886, Singapore
| |
Collapse
|
2
|
Duan X, Chen Z, Zhan Z, Li L, Lei X, Long Y, Xie X, Chen H. Establishment of new transurethral catheterization methods for male mice. Biol Methods Protoc 2024; 9:bpae005. [PMID: 38414648 PMCID: PMC10898326 DOI: 10.1093/biomethods/bpae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
Transurethral catheterization in mice is multifaceted, serving essential functions such as perfusion and drug delivery, and is critical in the development of various urological animal disease models. The complex anatomy of the male mouse urethra presents significant challenges in transurethral catheterization, leading to a predominance of research focused on female specimens. This bias limits the utilization of male mice in lower urinary tract disease studies. Our research aims to develop new reliable methods for transurethral catheterization in adult male mice, thereby expanding their use in relevant disease research. Experiments were conducted on adult male C57BL/6J mice. Utilizing a PE10 catheter measuring 4.5-5 cm in length, the catheter was inserted into the bladder via the mouse's urethra under anesthesia. The intubation technique entailed regulating the insertion force, ensuring the catheter's lubrication, using a trocar catheter, modifying the catheter's trajectory, and accommodating the curvature of the bladder neck. Post-catheter insertion, ultrasound imaging was employed to confirm the catheter's accurate positioning within the bladder. Subsequent to catheterization, the bladder was perfused using trypan blue. This method was further validated through its successful application in establishing an acute urinary retention (AUR) model, where the mouse bladder was infused with saline to a pressure of 50 or 80 cm H2O, maintained steadily for 30 min. A thorough morphological assessment of the mouse bladder was conducted after the infusion. Our study successfully pioneered methods for transurethral catheterization in male mice. This technique not only facilitates precise transurethral catheterization but also proves applicable to male mouse models for lower urinary tract diseases, such as AUR.
Collapse
Affiliation(s)
- Xi Duan
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Zhibin Chen
- Department of Urology, Neijiang First People's Hospital, Neijiang 641099, China
| | - Zhean Zhan
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Langhui Li
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Xianying Lei
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yang Long
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xiang Xie
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| | - Huan Chen
- The School of Basic Medical Science, Southwest Medical University, Luzhou 646000, China
- Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
- Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder AK, Almeida LN, Clare S, Harcourt K, Ward CJ, Bashford-Rogers R, Lawley T, Manz RA, Okkenhaug K, Masopust D, Clatworthy MR. Tissue-resident B cells orchestrate macrophage polarisation and function. Nat Commun 2023; 14:7081. [PMID: 37925420 PMCID: PMC10625551 DOI: 10.1038/s41467-023-42625-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/17/2023] [Indexed: 11/06/2023] Open
Abstract
B cells play a central role in humoral immunity but also have antibody-independent functions. Studies to date have focused on B cells in blood and secondary lymphoid organs but whether B cells reside in non-lymphoid organs (NLO) in homeostasis is unknown. Here we identify, using intravenous labeling and parabiosis, a bona-fide tissue-resident B cell population in lung, liver, kidney and urinary bladder, a substantial proportion of which are B-1a cells. Tissue-resident B cells are present in neonatal tissues and also in germ-free mice NLOs, albeit in lower numbers than in specific pathogen-free mice and following co-housing with 'pet-store' mice. They spatially co-localise with macrophages and regulate their polarization and function, promoting an anti-inflammatory phenotype, in-part via interleukin-10 production, with effects on bacterial clearance during urinary tract infection. Thus, our data reveal a critical role for tissue-resident B cells in determining the homeostatic 'inflammatory set-point' of myeloid cells, with important consequences for tissue immunity.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Sathi Wijeyesinghe
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Anita Chandra
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ann-Katrin Clauder
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Larissa N Almeida
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Simon Clare
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Christopher J Ward
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | | | - Trevor Lawley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Klaus Okkenhaug
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - David Masopust
- Department of Microbiology and Immunology, Centre for Immunology, University of Minnesota, Minneapolis, MI, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
4
|
Daugherty SL, Healy KM, Beckel JM. In Vivo Luminal Measurement of Distension-evoked Urothelial ATP Release in Rodents. J Vis Exp 2022:10.3791/64227. [PMID: 36155959 PMCID: PMC11450523 DOI: 10.3791/64227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
ATP, released from the urothelium in response to bladder distension, is thought to play a significant sensory role in the control of micturition. Therefore, accurate measurement of urothelial ATP release in a physiological setting is an important first step in studying the mechanisms that control purinergic signaling in the urinary bladder. Existing techniques to study mechanically evoked urothelial ATP release utilize cultured cells plated on flexible supports or bladder tissue pinned into Ussing chambers; however, each of these techniques does not fully emulate conditions in the intact bladder. Therefore, an experimental setup was developed to directly measure ATP concentrations in the lumen of the rodent urinary bladder. In this setup, the bladders of anesthetized rodents are perfused through catheters in both the dome of the bladder and via the external urethral orifice. Pressure in the bladder is increased by capping the urethral catheter while perfusing sterile fluid into the bladder through the dome. Measurement of intravesical pressure is achieved using a pressure transducer attached to the bladder dome catheter, akin to the setup used for cystometry. Once the desired pressure is reached, the urethral catheter's cap is removed, and fluid collected for ATP quantification by luciferin-luciferase assay. Through this experimental setup, the mechanisms controlling both mechanical and chemical stimulation of urothelial ATP release can be interrogated by including various agonists or antagonists into the perfusate or by comparing results between wildtype and genetically modified animals.
Collapse
Affiliation(s)
- Stephanie L Daugherty
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine
| | - Keara M Healy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine
| | - Jonathan M Beckel
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine;
| |
Collapse
|
5
|
Xie AX, Iguchi N, Clarkson TC, Malykhina AP. Pharmacogenetic inhibition of lumbosacral sensory neurons alleviates visceral hypersensitivity in a mouse model of chronic pelvic pain. PLoS One 2022; 17:e0262769. [PMID: 35077502 PMCID: PMC8789164 DOI: 10.1371/journal.pone.0262769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
The study investigated the cellular and molecular mechanisms in the peripheral nervous system (PNS) underlying the symptoms of urologic chronic pelvic pain syndrome (UCPPS) in mice. This work also aimed to test the feasibility of reversing peripheral sensitization in vivo in alleviating UCPPS symptoms. Intravesical instillation of vascular endothelial growth factor A (VEGFA) was used to induce UCPPS-like symptoms in mice. Spontaneous voiding spot assays and manual Von Frey tests were used to evaluate the severity of lower urinary tract symptoms (LUTS) and visceral hypersensitivity in VEGFA-instilled mice. Bladder smooth muscle strip contractility recordings (BSMSC) were used to identify the potential changes in myogenic and neurogenic detrusor muscle contractility at the tissue-level. Quantitative real-time PCR (qPCR) and fluorescent immunohistochemistry were performed to compare the expression levels of VEGF receptors and nociceptors in lumbosacral dorsal root ganglia (DRG) between VEGFA-instilled mice and saline-instilled controls. To manipulate primary afferent activity, Gi-coupled Designer Receptors Exclusively Activated by Designer Drugs (Gi-DREADD) were expressed in lumbosacral DRG neurons of TRPV1-Cre-ZGreen mice via targeted adeno-associated viral vector (AAVs) injections. A small molecule agonist of Gi-DREADD, clozapine-N-oxide (CNO), was injected into the peritoneum (i. p.) in awake animals to silence TRPV1 expressing sensory neurons in vivo during physiological and behavioral recordings of bladder function. Intravesical instillation of VEGFA in the urinary bladders increased visceral mechanical sensitivity and enhanced RTX-sensitive detrusor contractility. Sex differences were identified in the baseline detrusor contractility responses and VEGF-induced visceral hypersensitivity. VEGFA instillations in the urinary bladder led to significant increases in the mRNA and protein expression of transient receptor potential cation channel subfamily A member 1 (TRPA1) in lumbosacral DRG, whereas the expression levels of transient receptor potential cation channel subfamily V member 1 (TRPV1) and VEGF receptors (VEGFR1 and VEGFR2) remained unchanged when compared to saline-instilled animals. Importantly, the VEGFA-induced visceral hypersensitivity was reversed by Gi-DREADD-mediated neuronal silencing in lumbosacral sensory neurons. Activation of bladder VEGF signaling causes sensory neural plasticity and visceral hypersensitivity in mice, confirming its role of an UCPPS biomarker as identified by the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) research studies. Pharmacogenetic inhibition of lumbosacral sensory neurons in vivo completely reversed VEGFA-induced pelvic hypersensitivity in mice, suggesting the strong therapeutic potential for decreasing primary afferent activity in the treatment of pain severity in UCPPS patients.
Collapse
Affiliation(s)
- Alison Xiaoqiao Xie
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Nao Iguchi
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Taylor C. Clarkson
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| | - Anna P. Malykhina
- Department of Surgery, School of Medicine, Anschutz Medical Campus, University of Colorado, Denver, Colorado, United States of America
| |
Collapse
|
6
|
Lamanna OK, Hsieh MH, Forster CS. Novel catheter design enables transurethral catheterization of male mice. Am J Physiol Renal Physiol 2020; 319:F29-F32. [PMID: 32463724 DOI: 10.1152/ajprenal.00121.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The male mouse is underrepresented in research of the urinary tract due to the difficulty of transurethral catheterization. As a result, there is a lack of analysis of sex differences in urinary tract research. Here, we present a novel catheter design and technique that enables urethral catheterization of male mice for bladder inoculation. Our catheterization technique uses the resistance met at the level of the external urinary sphincter and prostate to guide the retraction, positioning, and advancement of the catheter into the urinary bladder. We have shown that this method can be used to reproducibly catheterize 12 male mice with minimal urogenital trauma but cannot be used as a cystometric technique. This method will facilitate the expansion of research into sex differences in various genitourinary conditions that require transurethral catheterization of mice.
Collapse
Affiliation(s)
| | - Michael H Hsieh
- Children's National Hospital, Washington, District of Columbia
| | | |
Collapse
|