1
|
Zhu H, Qin N, Xu X, Sun X, Chen X, Zhao J, Xu R, Mishra B. Synergistic inhibition of csal1 and csal3 in granulosa cell proliferation and steroidogenesis of hen ovarian prehierarchical development†. Biol Reprod 2020; 101:986-1000. [PMID: 31350846 PMCID: PMC6877779 DOI: 10.1093/biolre/ioz137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
SALL1 and SALL3 are transcription factors that play an essential role in regulating developmental processes and organogenesis in many species. However, the functional role of SALL1 and SALL3 in chicken prehierarchical follicle development is unknown. This study aimed to explore the potential role and mechanism of csal1 and csal3 in granulosa cell proliferation, differentiation, and follicle selection within the prehierarchical follicles of hen ovary. Our data demonstrated that the csal1 and csal3 transcriptions were highly expressed in granulosa cells of prehierarchical follicles, and their proteins were mainly localized in the cytoplasm of granulosa cells and oocytes as well as in the ovarian stroma and epithelium. It initially revealed that both csal1 and csal3 may be involved in chicken prehierarchical follicle development via a translocation mechanism. Furthermore, our results showed an abundance of CCND1, Bcat, StAR, CYP11A1, and FSHR mRNA in granulosa cells, and the proliferation levels of granulosa cells from the prehierarchical follicles were significantly increased by siRNA-mediated knockdown of csal1 or/and csal3. Conversely, the overexpression of csal1 or/and csal3 in the granulosa cells led to a remarkably decreased of them. Moreover, csal1 and csal3 together exert a much stronger effect on the regulation than any of csal1 or csal3. These results indicated that csal1 and csal3 play synergistic inhibitory roles on granulosa cell proliferation, differentiation, and steroidogenesis during prehierarchical follicle development in vitro. The current data provide a basis of molecular mechanisms of csal1 and csal3 in controlling the prehierarchical follicle development and growth of hen ovary in vivo.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Department of Animal Genetics, Breeding and Reproduction, College of Animal Husbandry and Veterinary, Jinzhou Medical University, Jinzhou, China
| | - Ning Qin
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Xiaoxing Xu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Xue Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Xiaoxia Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jinghua Zhao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rifu Xu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China.,Modern Agricultural Technology International Cooperative Joint Laboratory of the Ministry of Education, Changchun, P. R. China
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
2
|
Bekmurzayeva A, Dukenbayev K, Azevedo HS, Marsili E, Tosi D, Kanayeva D. Optimizing Silanization to Functionalize Stainless Steel Wire: Towards Breast Cancer Stem Cell Isolation. MATERIALS 2020; 13:ma13173693. [PMID: 32825531 PMCID: PMC7504676 DOI: 10.3390/ma13173693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/03/2022]
Abstract
Chemically modified metal surfaces have been used to recognize and capture specific cell types and biomolecules. In this work, stainless steel wires were functionalized with aptamers against breast cancer stem cell markers. Stainless steel wires were first electropolished and silanized via electrodeposition. Aptamers were then attached to the silanized surface through a cross-linker. The functionalized wires were able to capture the target cells in an in vitro test. During surface modification steps, wires were analyzed by atomic force microscopy, cyclic voltammetry, scanning electron and fluorescence microscopy to determine their surface composition and morphology. Optimized conditions of silanization (applied potential, solution pH, heat treatment temperature) for obtaining an aptamer-functionalized wire were determined in this work together with the use of several surface characterization techniques suitable for small-sized and circular wires. These modified wires have potential applications for the in vivo capture of target cells in blood flow, since their small size allows their insertion as standard guidewires in biomedical devices.
Collapse
Affiliation(s)
- Aliya Bekmurzayeva
- Science, Engineering and Technology Program, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Kanat Dukenbayev
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.D.); (E.M.)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK;
| | - Enrico Marsili
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.D.); (E.M.)
| | - Daniele Tosi
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (K.D.); (E.M.)
| | - Damira Kanayeva
- School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan
- Correspondence:
| |
Collapse
|
3
|
Poggiana C, Rossi E, Zamarchi R. Possible role of circulating tumor cells in early detection of lung cancer. J Thorac Dis 2020; 12:3821-3835. [PMID: 32802464 PMCID: PMC7399415 DOI: 10.21037/jtd.2020.02.24] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The prognosis of lung cancer varies highly depending on the disease stage at diagnosis, from a 5-year survival rate close to 90% in stage I, to 10% or less in stage IV disease. The enhancement of early diagnosis of this malignancy is mandatory to improve prognosis, because lung cancer patients stay long asymptomatic or few symptomatic after disease onset. Nowadays, liquid biopsy has emerged as a minimally-invasive tool to address the urgent need for real time monitoring, stratification, and personalized treatment of malignancies, including lung cancer. Liquid biopsy refers to a class of biomarkers, including circulating tumor cells (CTCs), cell-free circulating tumor DNA (ctDNA) and tumor-derived extracellular vesicles (tdEV). Since CTCs represent a crucial step in disease progression and metastasis, we reviewed here the scientific literature about the use of CTCs in early diagnosis of lung cancer; different techniques, and different strategies (e.g., source of analysis sample or high-risk groups of patients) were discussed showing the potential of implementing liquid biopsy in the clinical routine of non-metastatic lung cancer.
Collapse
Affiliation(s)
| | - Elisabetta Rossi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
4
|
CTCs 2020: Great Expectations or Unreasonable Dreams. Cells 2019; 8:cells8090989. [PMID: 31461978 PMCID: PMC6769853 DOI: 10.3390/cells8090989] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/20/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
Circulating tumor cells (CTCs) are cellular elements that can be scattered into the bloodstream from primary cancer, metastasis, and even from a disseminated tumor cell (DTC) reservoir. CTCs are “seeds”, able to give rise to new metastatic lesions. Since metastases are the cause of about 90% of cancer-related deaths, the significance of CTCs is unquestionable. However, two major issues have stalled their full clinical exploitation: rarity and heterogeneity. Therefore, their full clinical potential has only been predicted. Finding new ways of studying and using such tremendously rare and important events can open new areas of research in the field of cancer research, and could drastically improve tumor companion diagnostics, personalized treatment strategies, overall patients management, and reduce healthcare costs.
Collapse
|