1
|
Gao L, Zhao X, Wu L, Liu C, Ding R, Wang H, Shang X. Low-frequency Transcranial Magnetic Stimulation Ameliorates Anhedonic Behaviors and Regulates the Gut Microbiome in Mice Exposed to Chronic Unpredictable Mild Stress. ALPHA PSYCHIATRY 2024; 25:493-501. [PMID: 39360304 PMCID: PMC11443298 DOI: 10.5152/alphapsychiatry.2024.241561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/25/2024] [Indexed: 10/04/2024]
Abstract
Objective This paper presents a preliminary study on whether low-frequency transcranial magnetic stimulation (LF-TMS) can modulate the gut microbiota in mice with chronic unpredictable mild stress (CUMS). Methods Mice received LF-TMS (1 Hz, 20 mT) for 28 consecutive days under chronic unpredictable mild stress (CUMS). The composition of gut microbiota of stool samples were tested. Results CUMS caused significant changes in gut microbiotas, specifically in community diversity of gut microbiotas (P < .05). Compared with the stressed group mice, the Chao1 index (P < .05), Observed species index (P < .05), Faith's PD index (P < .05) and Shannon index (P < .05) of the LF-TMS treatment group were significantly increased. Furthermore, 1 Hz LF-TMS-treatment partially recovered chronic stress induced changes of microbiotas, such as the abundance of Chloroflexi, Actinobacteria. Conclusion These results manifested that LF-TMS treatment can improve the anhedonic behaviors caused by CUMS in mice, which are connected with regulating the related intestinal microbial community disturbance, including species diversity, structure of gut microbiota, and species composition.
Collapse
Affiliation(s)
- Linyin Gao
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology School of Basic Medical Sciences, Tang'shan, Hebei Province, P.R. China
| | - Xiangwei Zhao
- Department of Psychiatry, North China University of Science and Technology School of Psychology and Mental Health, Tang'shan, Hebei Province, P.R. China
| | - Lei Wu
- Department of Psychiatry, North China University of Science and Technology School of Psychology and Mental Health, Tang'shan, Hebei Province, P.R. China
| | - Chuan Liu
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology School of Basic Medical Sciences, Tang'shan, Hebei Province, P.R. China
| | - Ran Ding
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology School of Basic Medical Sciences, Tang'shan, Hebei Province, P.R. China
| | - Haitao Wang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology School of Basic Medical Sciences, Tang'shan, Hebei Province, P.R. China
- Department of Psychiatry, North China University of Science and Technology School of Psychology and Mental Health, Tang'shan, Hebei Province, P.R. China
| | - Xueliang Shang
- Department of Psychiatry, North China University of Science and Technology School of Psychology and Mental Health, Tang'shan, Hebei Province, P.R. China
| |
Collapse
|
2
|
Regniez M, Dufort-Gervais J, Provost C, Mongrain V, Martinez M. Characterization of Sleep, Emotional, and Cognitive Functions in a New Rat Model of Concomitant Spinal Cord and Traumatic Brain Injuries. J Neurotrauma 2024; 41:1044-1059. [PMID: 37885242 DOI: 10.1089/neu.2023.0387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
Traumatic injuries to the spinal cord or the brain have serious medical consequences and lead to long-term disability. The epidemiology, medical complications, and prognosis of isolated spinal cord injury (SCI) and traumatic brain injury (TBI) have been well described. However, there are limited data on patients suffering from concurrent SCI and TBI, even if a large proportion of SCI patients have concomitant TBI. The complications associated with this "dual-diagnosis" such as cognitive or behavioral dysfunction are well known in the rehabilitation setting, but evidence-based and standardized approaches for diagnosis and treatment are lacking. Our goal was to develop and characterize a pre-clinical animal model of concurrent SCI and TBI to help identifying "dual-diagnosis" tools. Female rats received a unilateral contusive SCI at the thoracic level alone (SCI group) or combined with a TBI centered on the contralateral sensorimotor cortex (SCI-TBI group). We first validated that the SCI extent was comparable between SCI-TBI and SCI groups, and that hindlimb function was impaired. We characterized various neurological outcomes, including locomotion, sleep architecture, brain activity during sleep, depressive- and anxiety-like behaviors, and working memory. We report that SCI-TBI and SCI groups show similar impairments in global locomotor function. While wake/sleep amount and distribution and anxiety- and depression-like symptoms were not affected in SCI-TBI and SCI groups in comparison to the control group (laminectomy and craniotomy only), working memory was impaired only in SCI-TBI rats. This pre-clinical model of concomitant SCI and TBI, including more severe variations of it, shows a translational value for the identification of biomarkers to refine the "dual-diagnosis" of neurotrauma in humans.
Collapse
Affiliation(s)
- Morgane Regniez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
| | | | | | - Valérie Mongrain
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Research Center of the CHUM, Montréal, Québec, Canada
| | - Marina Martinez
- Department of Neuroscience, Université de Montreal, Montréal, Québec, Canada
- Recherche CIUSSS-NIM, Montréal, Québec, Canada
- Groupe de recherche sur la Signalisation Neurale et la Circuiterie, Université de Montreal, Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Université de Montreal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Huzayyin AAS, Ibrahim MK, Hassanein NMA, Ahmed HMS. Vitamin D3 and zinc supplements augment the antimanic efficacy of lithium and olanzapine treatments in an animal model of mania. Nutr Neurosci 2024:1-14. [PMID: 38635860 DOI: 10.1080/1028415x.2024.2338344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Objective: Bipolar disorder (BD) is a challenging psychiatric disorder and a complex disease. The associated reduction in serum vitamin D3 (VitD3) levels in BD patients and the contribution of zinc (Zn) to the treatment, along with the severe side effects of lithium (Li) treatment, were encouraging to assess the efficacy of different correlated combinations of therapeutic/nutraceutical treatments such as olanzapine (Oln), VitD3, and Zn against Li. Methods: Mania was induced in C57BL/6 mice by administering methylphenidate (MPH) for 14 consecutive days. On the 8th day of MPH injection, different treatment regimens were administered, Li, Oln, VitD3/Zn, VitD3/Zn/Oln, VitD3 + Zn + Oln + Li50mg/kg (C50), and VitD3 + Zn + Oln + Li100mg/kg (C100). Both VitD3 (850 IU/kg) and Zn (180 mg/kg) were supplied with food for 2 weeks before starting the induction of mania, which continued until the end of MPH administration. Behavioral, brain oxidative stress, thyroid hormones, VitD3, Zn, GsK-3β, and Bcl2 levels, as well as brain histopathological alterations, were assessed. Results: Manic mice exhibited alterations in all tested parameters, and the histopathological examination of the cortex and hippocampus confirmed these results. The VitD3/Zn/Oln, C50, and C100 treatment regimens reversed most of the behavioral and pathophysiological alterations; however, the C50 treatment regimen was the most efficient. Conclusions: This study emphasizes the importance of combining different antimanic medications like Li and Oln with nutraceutical supplements to increase their antimanic efficacy, reduce their adverse effects, and, ideally, improve the BD patient's quality of life.
Collapse
Affiliation(s)
- Aya A S Huzayyin
- Central Administration of Drug Control, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Michael K Ibrahim
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Nahed M A Hassanein
- Developmental Pharmacology and Acute Toxicity Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Li G, Bo B, Wang P, Qian P, Li M, Li Y, Tong C, Zhang K, Zhang B, Jiang T, Liang Z, Duan X. Instantaneous antidepressant effect of lateral habenula deep brain stimulation in rats studied with functional MRI. eLife 2023; 12:e84693. [PMID: 37261976 PMCID: PMC10234627 DOI: 10.7554/elife.84693] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
The available treatments for depression have substantial limitations, including low response rates and substantial lag time before a response is achieved. We applied deep brain stimulation (DBS) to the lateral habenula (LHb) of two rat models of depression (Wistar Kyoto rats and lipopolysaccharide-treated rats) and observed an immediate (within seconds to minutes) alleviation of depressive-like symptoms with a high-response rate. Simultaneous functional MRI (fMRI) conducted on the same sets of depressive rats used in behavioral tests revealed DBS-induced activation of multiple regions in afferent and efferent circuitry of the LHb. The activation levels of brain regions connected to the medial LHb (M-LHb) were correlated with the extent of behavioral improvements. Rats with more medial stimulation sites in the LHb exhibited greater antidepressant effects than those with more lateral stimulation sites. These results indicated that the antidromic activation of the limbic system and orthodromic activation of the monoaminergic systems connected to the M-LHb played a critical role in the rapid antidepressant effects of LHb-DBS. This study indicates that M-LHb-DBS might act as a valuable, rapid-acting antidepressant therapeutic strategy for treatment-resistant depression and demonstrates the potential of using fMRI activation of specific brain regions as biomarkers to predict and evaluate antidepressant efficacy.
Collapse
Affiliation(s)
- Gen Li
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
| | - Binshi Bo
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Puxin Wang
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Peixing Qian
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Mingzhe Li
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Yuyan Li
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
| | - Chuanjun Tong
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
- School of Biomedical Engineering, Southern Medical UniversityGuangzhouChina
| | - Kaiwei Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of SciencesBeijingChina
| | - Zhifeng Liang
- Institute of Neuroscience, CAS Center for Excellence in Brain Sciences and Intelligence Technology, Key Laboratory of Primate Neurobiology, Chinese Academy of SciencesShanghaiChina
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Future Technology, Peking UniversityBeijingChina
- Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
- National Biomedical Imaging Center, Peking UniversityBeijingChina
| |
Collapse
|
5
|
Li J, Zhu P, Li Y, Xiao K, Tang J, Liang X, Luo Y, Wang J, Deng Y, Jiang L, Xiao Q, Guo Y, Tang Y, Huang C. The liver X receptors agonist GW3965 attenuates depressive-like behaviors and suppresses microglial activation and neuroinflammation in hippocampal subregions in a mouse depression model. J Comp Neurol 2022; 530:2852-2867. [PMID: 35758275 DOI: 10.1002/cne.25380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 11/09/2022]
Abstract
Liver X receptors (LXRs) have recently been reported to be novel and potential targets for the reversal of depressive-like behaviors, but the mechanism remains unclear. Hippocampal neuroinflammation and impairment of the normal structure and function of microglia are closely associated with depression. To investigate the effects of LXRs agonist (GW3965) on neuroinflammation and microglia in the hippocampal formation of mice with chronic unpredictable stress (CUS)-induced depression, depressive-like behaviors were evaluated by behavioral tests, hippocampal LXRs gene expression were evaluated by qRT-PCR, the protein expression levels of interleukin-1β, tumor necrosis factor-α, inducible nitric oxide synthase, nuclear factor kappa B, and cluster of differentiation 206 were estimated by western blotting, modern stereological methods were used to precisely quantify the total number of microglia in each hippocampal subregion, and immunofluorescence was used to detect the density of activated microglia and the morphology of microglia. We found that GW3965 alleviated the depressive-like behavior induced by CUS, reversed the decrease in hippocampal LXRα and LXRβ induced by CUS, increased the protein expression of pro-inflammatory factors, and decreased the protein expression of antiinflammatory factors induced by CUS. Moreover, CUS intervention significantly increased the number of microglia in the CA1 region, CA2/3 region, and dentate gyrus and the density of activated microglia in the CA2/3 region and dentate gyrus and significantly decreased the endpoints of microglial branches and process length of microglia in the dentate gyrus, while 4 weeks of injections with GW3965 reversed these changes. These findings suggest that regulating the number, activated state, and morphology of microglia in hippocampal subregions might be an important basis for the antidepressant effects of LXRs.
Collapse
Affiliation(s)
- Jing Li
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Peilin Zhu
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yue Li
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Kai Xiao
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Pathophysiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yanmin Luo
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yuhui Deng
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Lab Teaching & Management Center, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Radioactive Medicine, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yijing Guo
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Department of Histology and Embryology, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Chunxia Huang
- Department of Physiology, College of Basic Medicine, Chongqing Medical University, Chongqing, China.,Laboratory of Stem Cells and Tissue Engineering, College of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Verma H, Bhattacharjee A, Shivavedi N, Nayak PK. Evaluation of rosmarinic acid against myocardial infarction in maternally separated rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1189-1207. [PMID: 35876905 DOI: 10.1007/s00210-022-02273-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/10/2022] [Indexed: 12/07/2022]
Abstract
Depression and coronary heart diseases are the common comorbid disorder affecting humans globally. The present study evaluated the effectiveness of rosmarinic acid (RA) against myocardial infarction (MI) in comorbid depression induced by maternal separation in rats. Maternal stress is one of the childhood crises that may be a potential risk factor for coronary heart disease in later part of life. As per protocol, 70-80% of pups were separated daily for 3 h between postnatal day 1 (PND1) and postnatal day 21 (PND21). Forced-swim test, sucrose preference test, and electrocardiography were performed during the experiment. Body weight was measured on PND0, PND35, and PND55. Orally rosmarinic acid (25 mg/kg and 50 mg/kg) and fluoxetine (10 mg/kg) was done from PND35 to PND55. On PND53 and PND54, isoproterenol (100 mg/kg, subcutaneously) was administered to induce myocardial infarction. On PND55, blood was collected and animals sacrificed, and plasma corticosterone, brain-derived neurotrophic factor, cardiac biomarkers, interleukine-10, and anti-oxidant parameters were measured. Rosmarinic acid and fluoxetine ameliorated the maternal separation-induced increase in immobility period, anhedonia, body weight, ST elevation, corticosterone, creatine kinase-MB (CK-MB), and lactate dehydrogenase (LDH). At the same time, both drugs elevated the tissue levels of BDNF, IL-10, glutathione, and superoxide dismutase activity. This study provides the first experimental evidence that maternal stress is an independent risk factor of cardiac abnormalities in rats. Moreover, maternal stress synergistically increases the severity of cardiac abnormalities induced by isoproterenol. Interestingly, fluoxetine and rosmarinic acid effectively ameliorated behavioral anomalies and myocardial infarction in maternally separated rats. Schematic representation of possible molecular mechanism of action of rosmarinic acid against MS-induced myocardial infarction. RA, rosmarinic acid; MS, maternal separation; PND, postnatal days; ISO, isoproterenol; BDNF, brain-derived neurotrophic factor; GSH, glutathione; SOD, superoxide dismutase; IL-10, interleukin-10; MI, myocardial infarction.
Collapse
Affiliation(s)
- Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Anindita Bhattacharjee
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University (BHU), Uttar Pradesh, Varanasi, 221005, India
| | - Naveen Shivavedi
- Shri Ram Group of Institutions, Faculty of Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University (BHU), Uttar Pradesh, Varanasi, 221005, India.
| |
Collapse
|
7
|
Ran W, Liang N, Yuan R, Wang Z, Gao J. Identification of Potential Key circRNAs in Aged Mice With Postoperative Delirium. Front Mol Neurosci 2022; 15:836534. [PMID: 35493320 PMCID: PMC9047966 DOI: 10.3389/fnmol.2022.836534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/01/2022] [Indexed: 11/24/2022] Open
Abstract
Postoperative delirium (POD) is a common postoperative complication in elderly patients and seriously affects postoperative recovery. The exact mechanism of POD is still unclear. Therefore, it is necessary to explore the mechanism of POD in transcriptional regulation. At present, circRNAs have been proven to play an important role in a variety of mental health and cognitive disorders, such as Alzheimer’s disease, depression and schizophrenia. To reveal the effect of circRNA on POD, we used microarray to analyze the differential expression profiles of circRNAs in the hippocampus of 12-month-old mice between the tibial fracture and control groups. A total of 1,4236 circRNAs were identified. Compared with the control group, there were 500 circRNAs with increased expression and 187 with decreased expression. The accuracy of the microarray data was further verified by qRT–PCR. Finally, GO enrichment and KEGG pathway analyses indicated that changes in axon orientation, ubiquitin-mediated proteolysis, glutamate synapses, the estrogen signaling pathway, the RAS signaling pathway and other systems may be important potential pathological mechanisms in the progression of POD. In particular, we found that the HOMER1 gene and its transcript mmu_circRNA_26701 are specifically expressed in the glutamate synapse, which may provide new clues and intervention targets for the progression of this refractory disease.
Collapse
|
8
|
Shi X, Bai H, Wang J, Wang J, Huang L, He M, Zheng X, Duan Z, Chen D, Zhang J, Chen X, Wang J. Behavioral Assessment of Sensory, Motor, Emotion, and Cognition in Rodent Models of Intracerebral Hemorrhage. Front Neurol 2021; 12:667511. [PMID: 34220676 PMCID: PMC8248664 DOI: 10.3389/fneur.2021.667511] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/20/2021] [Indexed: 11/15/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is the second most common type of stroke and has one of the highest fatality rates of any disease. There are many clinical signs and symptoms after ICH due to brain cell injury and network disruption resulted from the rupture of a tiny artery and activation of inflammatory cells, such as motor dysfunction, sensory impairment, cognitive impairment, and emotional disturbance, etc. Thus, researchers have established many tests to evaluate behavioral changes in rodent ICH models, in order to achieve a better understanding and thus improvements in the prognosis for the clinical treatment of stroke. This review summarizes existing protocols that have been applied to assess neurologic function outcomes in the rodent ICH models such as pain, motor, cognition, and emotion tests. Pain tests include mechanical, hot, and cold pain tests; motor tests include the following 12 types: neurologic deficit scale test, staircase test, rotarod test, cylinder test, grid walk test, forelimb placing test, wire hanging test, modified neurologic severity score, beam walking test, horizontal ladder test, and adhesive removal test; learning and memory tests include Morris water maze, Y-maze, and novel object recognition test; emotion tests include elevated plus maze, sucrose preference test, tail suspension test, open field test, and forced swim test. This review discusses these assessments by examining their rationale, setup, duration, baseline, procedures as well as comparing their pros and cons, thus guiding researchers to select the most appropriate behavioral tests for preclinical ICH research.
Collapse
Affiliation(s)
- Xiaoyu Shi
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Huiying Bai
- Zhengzhou University Hospital Outpatient Surgery Center, Zhengzhou, China
| | - Junmin Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiarui Wang
- Keieger School of Arts and Sciences, The Johns Hopkins University, Baltimore, MD, United States
| | - Leo Huang
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Meimei He
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuejun Zheng
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zitian Duan
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Danyang Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiaxin Zhang
- Saint John Paul the Great Catholic High School, Dumfries, VA, United States
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Ju X, Wang S, Yan P, Zhu C, Hu X, Dong J, Tan Z. Rapid Eye Movement Sleep Deprivation Combined With Fluoxetine Protects Against Depression-Induced Damage and Apoptosis in Rat Hippocampi via A1 Adenosine Receptor. Front Psychiatry 2021; 12:599399. [PMID: 34335318 PMCID: PMC8322534 DOI: 10.3389/fpsyt.2021.599399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Rapid eye movement sleep deprivation (REMSD) and fluoxetine affect depression, yet the detailed molecular mechanisms were not clear. Methods: Rat depression chronic unpredictable stress was constructed, and the body weight of rats was measured. The efficacy of REMSD and fluoxetine on the pleasure experience, exploration, and cognition of rats with depression was determined by the Sucrose preference test, the open field test, and Morris water task, respectively. The effects of REMSD and fluoxetine on depression-induced damage and apoptosis in rat hippocampi were detected using hematoxylin-eosin staining and terminal transferase-mediated biotin 2'-deoxyuridine, 5'-triphosphate nick end labeling. A1 adenosine receptor content was measured by immunohistochemistry. Relative expressions of the A1 adenosine receptor, proteins related to apoptosis (B Bcl-2-associated X protein; B-cell lymphoma 2), phosphoinositide 3-kinase, P38 mitogen-activated protein kinase, cFos, and adenosine deaminase RNA specific two were quantified by quantitative real-time polymerase chain reaction and Western blot as needed. Results: Depression decreased rat weight. REMSD combined with fluoxetine increased body weight, prompted rat behavior, alleviated depression-induced damage, attenuated apoptosis, and promoted A1 adenosine receptor level in rat hippocampi. Furthermore, the combined therapy upregulated expressions of A1 adenosine receptor, B-cell lymphoma 2, and phosphoinositide 3-kinase but downregulated those of B-cell lymphoma 2-associated X protein, P38 mitogen-activated protein kinase, cFos, and adenosine deaminase RNA specific 2 in the hippocampi of rats with depression. Conclusion:REMSD combined with fluoxetine protected rats against depression-induced damage and apoptosis in the hippocampus via the A1 adenosine receptor, providing a possible treatment strategy for depression.
Collapse
Affiliation(s)
- Xuan Ju
- Psychiatric Department, Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, Hangzhou, China
| | - Shengdong Wang
- Molecular Biology Laboratory, Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yan
- Molecular Biology Laboratory, Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, Hangzhou, China
| | - Chunyan Zhu
- Psychiatric Department, Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwen Hu
- Psychiatric Department, Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, Hangzhou, China
| | - Jiezheng Dong
- Psychiatric Department, Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhonglin Tan
- Psychiatric Department, Hangzhou Seventh People's Hospital, Mental Health Center of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|