1
|
Prototype Foamy Virus Integrase Displays Unique Biochemical Activities among Retroviral Integrases. Biomolecules 2021; 11:biom11121910. [PMID: 34944553 PMCID: PMC8699820 DOI: 10.3390/biom11121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/01/2022] Open
Abstract
Integrases of different retroviruses assemble as functional complexes with varying multimers of the protein. Retroviral integrases require a divalent metal cation to perform one-step transesterification catalysis. Tetrameric prototype foamy virus (PFV) intasomes assembled from purified integrase and viral DNA oligonucleotides were characterized for their activity in the presence of different cations. While most retroviral integrases are inactive in calcium, PFV intasomes appear to be uniquely capable of catalysis in calcium. The PFV intasomes also contrast with other retroviral integrases by displaying an inverse correlation of activity with increasing manganese beginning at relatively low concentrations. The intasomes were found to be significantly more active in the presence of chloride co-ions compared to acetate. While HIV-1 integrase appears to commit to a target DNA within 20 s, PFV intasomes do not commit to target DNA during their reaction lifetime. Together, these data highlight the unique biochemical activities of PFV integrase compared to other retroviral integrases.
Collapse
|
2
|
Kotlar RM, Jones ND, Senavirathne G, Gardner AM, Messer RK, Tan YY, Rabe AJ, Fishel R, Yoder KE. Retroviral prototype foamy virus intasome binding to a nucleosome target does not determine integration efficiency. J Biol Chem 2021; 296:100550. [PMID: 33744295 PMCID: PMC8050864 DOI: 10.1016/j.jbc.2021.100550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
Retroviral integrases must navigate host DNA packaged as chromatin during integration of the viral genome. Prototype foamy virus (PFV) integrase (IN) forms a tetramer bound to two viral DNA (vDNA) ends in a complex termed an intasome. PFV IN consists of four domains: the amino terminal extension domain (NED), amino terminal domain (NTD), catalytic core domain (CCD), and carboxyl terminal domain (CTD). The domains of the two inner IN protomers have been visualized, as well as the CCDs of the two outer IN protomers. However, the roles of the amino and carboxyl terminal domains of the PFV intasome outer subunits during integration to a nucleosome target substrate are not clear. We used the well-characterized 601 nucleosome to assay integration activity as well as intasome binding. PFV intasome integration to 601 nucleosomes occurs in clusters at four independent sites. We find that the outer protomer NED and NTD domains have no significant effects on integration efficiency, site selection, or binding. The CTDs of the outer PFV intasome subunits dramatically affect nucleosome binding but have little effect on total integration efficiency. The outer PFV IN CTDs did significantly alter the integration efficiency at one site. Histone tails also significantly affect intasome binding, but have little impact on PFV integration efficiency or site selection. These results indicate that binding to nucleosomes does not correlate with integration efficiency and suggests most intasome-binding events are unproductive.
Collapse
Affiliation(s)
- Randi M Kotlar
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nathan D Jones
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gayan Senavirathne
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anne M Gardner
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Ryan K Messer
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Yow Yong Tan
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Anthony J Rabe
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Richard Fishel
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Kristine E Yoder
- Cancer Biology and Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA; The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.
| |
Collapse
|
3
|
Kim J, Lee GE, Shin CG. Foamy Virus Integrase in Development of Viral Vector for Gene Therapy. J Microbiol Biotechnol 2020; 30:1273-1281. [PMID: 32699199 PMCID: PMC9728412 DOI: 10.4014/jmb.2003.03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Due to the broad host suitability of viral vectors and their high gene delivery capacity, many researchers are focusing on viral vector-mediated gene therapy. Among the retroviruses, foamy viruses have been considered potential gene therapy vectors because of their non-pathogenicity. To date, the prototype foamy virus is the only retrovirus that has a high-resolution structure of intasomes, nucleoprotein complexes formed by integrase, and viral DNA. The integration of viral DNA into the host chromosome is an essential step for viral vector development. This process is mediated by virally encoded integrase, which catalyzes unique chemical reactions. Additionally, recent studies on foamy virus integrase elucidated the catalytic functions of its three distinct domains and their effect on viral pathogenicity. This review focuses on recent advancements in biochemical, structural, and functional studies of foamy virus integrase for gene therapy vector research.
Collapse
Affiliation(s)
- Jinsun Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ga-Eun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Cha-Gyun Shin
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3067 Fax: +82-31-675-3108 E-mail:
| |
Collapse
|
4
|
Nucleosome DNA unwrapping does not affect prototype foamy virus integration efficiency or site selection. PLoS One 2019; 14:e0212764. [PMID: 30865665 PMCID: PMC6415784 DOI: 10.1371/journal.pone.0212764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 02/09/2019] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic DNA binding proteins must access genomic DNA that is packaged into chromatin in vivo. During a productive infection, retroviral integrases (IN) must similarly interact with chromatin to integrate the viral cDNA genome. Here we examine the role of nucleosome DNA unwrapping in the retroviral integrase search for a target site. These studies utilized PFV intasomes that are comprised of a tetramer of PFV IN with two oligomers mimicking the viral cDNA ends. Modified recombinant human histones were used to generate nucleosomes with increased unwrapping rates at different DNA regions. These modifications included the acetylmimetic H3(K56Q) and the chemically engineered H4(K77ac, K79ac). While transcription factors and DNA damage sensors may search nucleosome bound DNA during transient unwrapping, PFV intasome mediated integration appears to be unaffected by increased nucleosome unwrapping. These studies suggest PFV intasomes do not utilize nucleosome unwrapping to search nucleosome targets.
Collapse
|
5
|
Prototype foamy virus intasome aggregation is mediated by outer protein domains and prevented by protocatechuic acid. Sci Rep 2019; 9:132. [PMID: 30644416 PMCID: PMC6333793 DOI: 10.1038/s41598-018-36725-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/23/2018] [Indexed: 12/01/2022] Open
Abstract
The integrase (IN) enzyme of retrovirus prototype foamy virus (PFV) consists of four domains: amino terminal extension (NED), amino terminus (NTD), catalytic core (CCD), and carboxyl terminus domains (CTD). A tetramer of PFV IN with two viral DNA ends forms the functional intasome. Two inner monomers are catalytically active while the CCDs of the two outer monomers appear to play only structural roles. The NED, NTD, and CTD of the outer monomers are disordered in intasome structures. Truncation mutants reveal that integration to a supercoiled plasmid increases without the outer monomer CTDs present. Deletion of the outer CTDs enhances the lifetime of the intasome compared to full length (FL) IN or deletion of the outer monomer NTDs. High ionic strength buffer or several additives, particularly protocatechuic acid (PCA), enhance the integration of FL intasomes by preventing aggregation. These data confirm previous studies suggesting the disordered outer domains of PFV intasomes are not required for intasome assembly or integration. Instead, the outer CTDs contribute to aggregation of PFV intasomes which may be inhibited by high ionic strength buffer or the small molecule PCA.
Collapse
|
6
|
Bera S, Pandey KK, Aihara H, Grandgenett DP. Differential assembly of Rous sarcoma virus tetrameric and octameric intasomes is regulated by the C-terminal domain and tail region of integrase. J Biol Chem 2018; 293:16440-16452. [PMID: 30185621 DOI: 10.1074/jbc.ra118.004768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Retrovirus integrase (IN) catalyzes the concerted integration of linear viral DNA ends into chromosomes. The atomic structures of five different retrovirus IN-DNA complexes, termed intasomes, have revealed varying IN subunit compositions ranging from tetramers to octamers, dodecamers, and hexadecamers. Intasomes containing two IN-associated viral DNA ends capable of concerted integration are termed stable synaptic complexes (SSC), and those formed with a viral/target DNA substrate representing the product of strand-transfer reactions are strand-transfer complexes (STC). Here, we investigated the mechanisms associated with the assembly of the Rous sarcoma virus SSC and STC. C-terminal truncations of WT IN (286 residues) indicated a role of the last 18 residues ("tail" region) in assembly of the tetrameric and octameric SSC, physically stabilized by HIV-1 IN strand-transfer inhibitors. Fine mapping through C-terminal truncations and site-directed mutagenesis suggested that at least three residues (Asp-268-Thr-270) past the last β-strand in the C-terminal domain (CTD) are necessary for assembly of the octameric SSC. In contrast, the assembly of the octameric STC was independent of the last 18 residues of IN. Single-site substitutions in the CTD affected the assembly of the SSC, but not necessarily of the STC, suggesting that STC assembly may depend less on specific interactions of the CTD with viral DNA. Additionally, we demonstrate that trans-communication between IN dimer-DNA complexes facilitates the association of native long-terminal repeat (LTR) ends with partially defective LTR ends to produce a hybrid octameric SSC. The differential assembly of the tetrameric and octameric SSC improves our understanding of intasomes.
Collapse
Affiliation(s)
- Sibes Bera
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Krishan K Pandey
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| | - Hideki Aihara
- the Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
| | - Duane P Grandgenett
- From the Department of Molecular Microbiology and Immunology, Institute for Molecular Virology, Saint Louis University Health Sciences Center, Saint Louis, Missouri 63104 and
| |
Collapse
|
7
|
Mackler RM, Lopez MA, Osterhage MJ, Yoder KE. Prototype foamy virus integrase is promiscuous for target choice. Biochem Biophys Res Commun 2018; 503:1241-1246. [PMID: 30017200 PMCID: PMC6119477 DOI: 10.1016/j.bbrc.2018.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022]
Abstract
Retroviruses have two essential activities: reverse transcription and integration. The viral protein integrase (IN) covalently joins the viral cDNA genome to the host DNA. Prototype foamy virus (PFV) IN has become a model of retroviral intasome structure. However, this retroviral IN has not been well-characterized biochemically. Here we compare PFV IN to previously reported HIV-1 IN activities and discover significant differences. PFV IN is able to utilize the divalent cation calcium during strand transfer while HIV-1 IN is not. HIV-1 IN was shown to completely commit to a target DNA within 1 min, while PFV IN is not fully committed after 60 min. These results suggest that PFV IN is more promiscuous compared to HIV-1 IN in terms of divalent cation and target commitment.
Collapse
Affiliation(s)
- R M Mackler
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA
| | - M A Lopez
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA
| | - M J Osterhage
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA
| | - K E Yoder
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, 460 West 12(th)Ave, Columbus, OH, 43210, USA.
| |
Collapse
|