1
|
Kaji I, Roland JT, Rathan-Kumar S, Engevik AC, Burman A, Goldstein AE, Watanabe M, Goldenring JR. Cell differentiation is disrupted by MYO5B loss through Wnt/Notch imbalance. JCI Insight 2021; 6:e150416. [PMID: 34197342 PMCID: PMC8409988 DOI: 10.1172/jci.insight.150416] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Functional loss of myosin Vb (MYO5B) induces a variety of deficits in intestinal epithelial cell function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). The impact of MYO5B loss on differentiated cell lineage choice has not been investigated. We quantified the populations of differentiated epithelial cells in tamoxifen-induced, epithelial cell–specific MYO5B-knockout (VilCreERT2 Myo5bfl/fl) mice utilizing digital image analysis. Consistent with our RNA-sequencing data, MYO5B loss induced a reduction in tuft cells in vivo and in organoid cultures. Paneth cells were significantly increased by MYO5B deficiency along with expansion of the progenitor cell zone. We further investigated the effect of lysophosphatidic acid (LPA) signaling on epithelial cell differentiation. Intraperitoneal LPA significantly increased tuft cell populations in both control and MYO5B-knockout mice. Transcripts for Wnt ligands were significantly downregulated by MYO5B loss in intestinal epithelial cells, whereas Notch signaling molecules were unchanged. Additionally, treatment with the Notch inhibitor dibenzazepine (DBZ) restored the populations of secretory cells, suggesting that the Notch pathway is maintained in MYO5B-deficient intestine. MYO5B loss likely impairs progenitor cell differentiation in the small intestine in vivo and in vitro, partially mediated by Wnt/Notch imbalance. Notch inhibition and/or LPA treatment may represent an effective therapeutic approach for treatment of MVID.
Collapse
Affiliation(s)
- Izumi Kaji
- Section of Surgical Sciences and.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Joseph T Roland
- Section of Surgical Sciences and.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sudiksha Rathan-Kumar
- Section of Surgical Sciences and.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Amy C Engevik
- Section of Surgical Sciences and.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Andreanna Burman
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Anna E Goldstein
- Section of Surgical Sciences and.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - James R Goldenring
- Section of Surgical Sciences and.,Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Nashville VA Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
2
|
Single-Cell Imaging of Metastatic Potential of Cancer Cells. iScience 2018; 10:53-65. [PMID: 30500482 PMCID: PMC6263091 DOI: 10.1016/j.isci.2018.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/23/2018] [Accepted: 11/12/2018] [Indexed: 11/26/2022] Open
Abstract
Molecular imaging of metastatic “potential” is an unvanquished challenge. To engineer biosensors that can detect and measure the metastatic “potential” of single living cancer cells, we carried out a comprehensive analysis of the pan-cancer phosphoproteome to search for actin remodelers required for cell migration, which are enriched in cancers but excluded in normal cells. Only one phosphoprotein emerged, tyr-phosphorylated CCDC88A (GIV/Girdin), a bona fide metastasis-related protein across a variety of solid tumors. We designed multi-modular biosensors that are partly derived from GIV, and because GIV integrates prometastatic signaling by multiple oncogenic receptors, we named them “‘integrators of metastatic potential (IMP).” IMPs captured the heterogeneity of metastatic potential within primary lung and breast tumors at steady state, detected those few cells that have acquired the highest metastatic potential, and tracked their enrichment during metastasis. These findings provide proof of concept that IMPs can measure the diversity and plasticity of metastatic potential of tumor cells in a sensitive and unbiased way. Phosphoproteomes of cancers predicted a putative metastasis-specific phosphoevent FRET-based biosensor designed to assess this phosphoevent in living cells Biosensor tracks the diversity and plasticity of metastatic potential of cancer cells These sensors could direct drug efficacy testing against the most sinister cancer cells
Collapse
|