Caliri AW, Caceres A, Tommasi S, Besaratinia A. Hypomethylation of LINE-1 repeat elements and global loss of DNA hydroxymethylation in vapers and smokers.
Epigenetics 2020;
15:816-829. [PMID:
31996072 DOI:
10.1080/15592294.2020.1724401]
[Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The outbreak of vaping-related severe lung injuries and deaths and the epidemic of teen vaping in the U.S. underscore the urgent need for determining the biological consequences of electronic cigarette (e-cig) use. We have investigated the association between vaping and epigenetic changes by quantifying DNA methylation levels in Long Interspersed Nucleotide Element 1 (LINE-1) and global DNA hydroxymethylation (5-hmC) levels and measuring the expression level of enzymes catalysing the respective processes in peripheral blood of exclusive vapers, smokers, and controls, matched for age, gender, and race (n = 45). Both vapers and smokers showed significant loss of methylation in LINE-1 repeat elements in comparison to controls (P = 0.00854 and P = 0.03078, respectively). Similarly, vapers and smokers had significant reductions in 5-hmC levels relative to controls (P = 0.04884 and P = 0.0035, respectively). Neither the LINE-1 methylation levels nor the global 5-hmC levels were different between vapers and smokers. There was a direct correlation between methylation levels in the LINE-1 elements and global 5-hmC levels in the study subjects (r = 0.31696, P = 0.03389). Inverse and statistically significant correlations were found between both the LINE-1 methylation levels and the global 5-hmC levels and various vaping/smoking metrics in the study subjects. There were modest but not statistically significant changes in transcription of DNA methyltransferases and ten-eleven translocation enzymes in both vapers and smokers relative to controls. Our findings support follow-up genome-wide investigations into the epigenetic effects of vaping, which may further clarify the health consequences of e-cig use.
ABBREVIATIONS
5-mC: 5-methylcytosine; 5-hmC: 5-hydroxymethylcytosine; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; ACTIN: actin beta; ANOVA: Analysis of Variance; BER: base excision repair; BMI: body mass index; CO: carbon monoxide; COHb: carboxyhaemoglobin; COBRA: combined bisulphite restriction analysis; COPD: chronic obstructive pulmonary disease; DNMT1: DNA methyltransferase 1; DNMT3A: DNA methyltransferase 3A; DNMT3B: DNA methyltransferase 3B; e-cigs: electronic cigarettes; ELISA: enzyme-linked immunosorbent assay; ENDS: electronic nicotine delivery systems; FDA: Food and Drug Administration; GAPDH; glyceraldehyde-3-phosphate dehydrogenase; HPLC: high-performance liquid chromatography; LINE-1: Long Interspersed Nucleotide Element 1; PBS: phosphate-buffered saline; RFU: relative fluorescence units; RT-qPCR: quantitative reverse-transcription polymerase chain reaction; ROS: reactive oxygen species; SAM, S-adenosylmethionine; SE: standard error; TET1: ten-eleven translocation 1; TET2: ten-eleven translocation 2; TET3: ten-eleven translocation 3.
Collapse