1
|
Chen Z, Luo J, Li J, Kim G, Stewart A, Urban JF, Huang Y, Chen S, Wu LG, Chesler A, Trinchieri G, Li W, Wu C. Interleukin-33 Promotes Serotonin Release from Enterochromaffin Cells for Intestinal Homeostasis. Immunity 2020; 54:151-163.e6. [PMID: 33220232 DOI: 10.1016/j.immuni.2020.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/13/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
The gastrointestinal tract is known as the largest endocrine organ that encounters and integrates various immune stimulations and neuronal responses due to constant environmental challenges. Enterochromaffin (EC) cells, which function as chemosensors on the gut epithelium, are known to translate environmental cues into serotonin (5-HT) production, contributing to intestinal physiology. However, how immune signals participate in gut sensation and neuroendocrine response remains unclear. Interleukin-33 (IL-33) acts as an alarmin cytokine by alerting the system of potential environmental stresses. We here demonstrate that IL-33 induced instantaneous peristaltic movement and facilitated Trichuris muris expulsion. We found that IL-33 could be sensed by EC cells, inducing release of 5-HT. IL-33-mediated 5-HT release activated enteric neurons, subsequently promoting gut motility. Mechanistically, IL-33 triggered calcium influx via a non-canonical signaling pathway specifically in EC cells to induce 5-HT secretion. Our data establish an immune-neuroendocrine axis in calibrating rapid 5-HT release for intestinal homeostasis.
Collapse
Affiliation(s)
- Zuojia Chen
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jialie Luo
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jian Li
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Girak Kim
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Andy Stewart
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joseph F Urban
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, MD, USA
| | - Yuefeng Huang
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Shan Chen
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Ling-Gang Wu
- Synaptic Transmission Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Alexander Chesler
- Sensory Cells and Circuits Section, National Center for Complementary and Integrative Health, NIH, Bethesda, MD, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Wei Li
- Retinal Neurophysiology Section, National Eye Institute, NIH, Bethesda, MD, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
2
|
Malysz J, Rovner ES, Wake R, Petkov GV. Preparation and Utilization of Freshly Isolated Human Detrusor Smooth Muscle Cells for Characterization of 9-Phenanthrol-Sensitive Cation Currents. J Vis Exp 2020:10.3791/59884. [PMID: 32065126 PMCID: PMC7489995 DOI: 10.3791/59884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Detrusor smooth muscle (DSM) cells present within the urinary bladder wall ultimately facilitate urine storage and voiding. Preparation of the viable, fresh, and isolated DSM cells presents an important technical challenge whose achievement provides optimal cells for subsequent functional and molecular studies. The method developed and elaborated herein, successfully used by our group for over a decade, describes dissection of human urinary bladder specimens obtained from open bladder surgeries followed by an enzymatic two-step treatment of DSM pieces and mechanical trituration to obtain freshly isolated DSM cells. The initial step involves dissection to separate the DSM layer (also known as muscularis propria) from mucosa (urothelium, lamina propria, and muscularis mucosa) and the adjacent connective, vascular, and adipose tissues present. The DSM is then cut into pieces (2-3 mm x 4-6 mm) in nominal Ca2+-containing dissection/digestion solution (DS). DSM pieces are next transferred to and sequentially treated separately with DS containing papain and collagenase at ~37 °C for 30-45 min per step. Following washes with DS containing enzyme-free bovine serum and trituration with a fire-polished pipette, the pieces release single DSM cells. Freshly isolated DSM cells are ideally suited for patch-clamp electrophysiological and pharmacological characterizations of ion channels. Specifically, we show that the TRPM4 channel blocker 9-phenanthrol reduces voltage-step evoked cation currents recorded with the amphotericin-B perforated patch-clamp approach. DSM cells can also be studied by other techniques such as single cell RT-PCR, microarray analysis, immunocytochemistry, in situ proximity ligation assay, and Ca2+ imaging. The main advantage of utilizing single DSM cells is that the observations made relate directly to single cell characteristics revealed. Studies of freshly isolated human DSM cells have provided important insights characterizing the properties of various ion channels including cation-permeable in the urinary bladder and will continue as a gold standard in elucidating DSM cellular properties and regulatory mechanisms.
Collapse
Affiliation(s)
- John Malysz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center
| | - Eric S Rovner
- Department of Urology, Medical University of South Carolina
| | - Robert Wake
- Department of Urology, College of Medicine, University of Tennessee Health Science Center
| | - Georgi V Petkov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center; Department of Urology, College of Medicine, University of Tennessee Health Science Center; Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center;
| |
Collapse
|
3
|
Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR, Linden DR, Li JH, Leiter AB, Szurszewski JH, Farrugia G, Beyder A. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. Proc Natl Acad Sci U S A 2018; 115:E7632-E7641. [PMID: 30037999 PMCID: PMC6094143 DOI: 10.1073/pnas.1804938115] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Enterochromaffin (EC) cells constitute the largest population of intestinal epithelial enteroendocrine (EE) cells. EC cells are proposed to be specialized mechanosensory cells that release serotonin in response to epithelial forces, and thereby regulate intestinal fluid secretion. However, it is unknown whether EE and EC cells are directly mechanosensitive, and if so, what the molecular mechanism of their mechanosensitivity is. Consequently, the role of EE and EC cells in gastrointestinal mechanobiology is unclear. Piezo2 mechanosensitive ion channels are important for some specialized epithelial mechanosensors, and they are expressed in mouse and human EC cells. Here, we use EC and EE cell lineage tracing in multiple mouse models to show that Piezo2 is expressed in a subset of murine EE and EC cells, and it is distributed near serotonin vesicles by superresolution microscopy. Mechanical stimulation of a subset of isolated EE cells leads to a rapid inward ionic current, which is diminished by Piezo2 knockdown and channel inhibitors. In these mechanosensitive EE cells force leads to Piezo2-dependent intracellular Ca2+ increase in isolated cells as well as in EE cells within intestinal organoids, and Piezo2-dependent mechanosensitive serotonin release in EC cells. Conditional knockout of intestinal epithelial Piezo2 results in a significant decrease in mechanically stimulated epithelial secretion. This study shows that a subset of primary EE and EC cells is mechanosensitive, uncovers Piezo2 as their primary mechanotransducer, defines the molecular mechanism of their mechanotransduction and mechanosensitive serotonin release, and establishes the role of epithelial Piezo2 mechanosensitive ion channels in regulation of intestinal physiology.
Collapse
Affiliation(s)
- Constanza Alcaino
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Kaitlyn R Knutson
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Anthony J Treichel
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gulcan Yildiz
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Peter R Strege
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | - David R Linden
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Joyce H Li
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andrew B Leiter
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Joseph H Szurszewski
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905;
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|