1
|
Li YJ, Zhao X, Wu S, Yao N, Zhang X, Liu Y, Tian X, Li Y, Gao B, Johnston SC, Shi FD, Li Z. Formyl peptide receptor 1 and its antagonist T0080 in atherosclerosis. Cell Death Differ 2025:10.1038/s41418-025-01506-7. [PMID: 40204950 DOI: 10.1038/s41418-025-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Focal inflammation and arterial damage driven by macrophages are key pathogenic processes in atherosclerosis. However, the mechanisms that regulate these processes remain poorly understood. In this study, we demonstrate that formyl peptide receptor 1 (FPR1) agonist, a mitochondrial N-formyl peptide, is elevated in the blood of patients with atherosclerosis and correlates with carotid stenosis. Macrophages expressing FPR1 were found in atherosclerotic lesions. Conditional deletion of Fpr1 in macrophages reduced plaque formation, local inflammation, and aortic atherosclerosis in apolipoprotein E (ApoE)-/- mice. FPR1 activates protein kinase C (PKC) in macrophages, promoting the production of reactive oxygen species (ROS), tumor necrosis factor alpha (TNF-α) and interleukin-1beta (IL-1β), which accelerates the apoptosis of endothelial cells and smooth muscle cells. To inhibit FPR1 bioactivity, we developed an antagonist, T0080. Therapeutic administration of T0080 attenuates atherosclerotic progression in ApoE-/- mice. Our findings highlight the pivotal role of FPR1 in macrophage-mediated atherosclerotic plaque formation and support further investigation of T0080-mediated FPR1 inhibition as a potential treatment for atherosclerosis.
Collapse
Affiliation(s)
- Yu-Jing Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Xue Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Siting Wu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Nan Yao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xueyu Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yanyan Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xiaobing Tian
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yulin Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bin Gao
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - S Claiborne Johnston
- Department of Neurology, University of California, San Francisco, CA, 94143, USA
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Zhiguo Li
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
2
|
Ramji DP, Ismail A, Chen J, Alradi F, Al Alawi S. Survey of In Vitro Model Systems for Investigation of Key Cellular Processes Associated with Atherosclerosis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2419:39-56. [PMID: 35237957 DOI: 10.1007/978-1-0716-1924-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atherosclerosis progression is associated with a complex array of cellular processes in the arterial wall, including endothelial cell activation/dysfunction, chemokine-driven recruitment of immune cells, differentiation of monocytes to macrophages and their subsequent transformation into lipid laden foam cells, activation of inflammasome and pro-inflammatory signaling, and migration of smooth muscle cells from the media to the intima. The use of in vitro model systems has considerably advanced our understanding of these atherosclerosis-associated processes and they are also often used in drug discovery and other screening platforms. This chapter will describe key in vitro model systems employed frequently in atherosclerosis research.
Collapse
Affiliation(s)
- Dipak P Ramji
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK.
| | - Alaa Ismail
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Jing Chen
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Fahad Alradi
- Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
3
|
Faia C, Plaisance-Bonstaff K, Vittori C, Wyczechowska D, Lassak A, Meyaski-Schluter M, Reiss K, Peruzzi F. Attenuated Negative Feedback in Monocyte-Derived Macrophages From Persons Living With HIV: A Role for IKAROS. Front Immunol 2021; 12:785905. [PMID: 34917094 PMCID: PMC8668949 DOI: 10.3389/fimmu.2021.785905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
Persons living with HIV (PLWH) are at higher risk of developing secondary illnesses than their uninfected counterparts, suggestive of a dysfunctional immune system in these individuals. Upon exposure to pathogens, monocytes undergo epigenetic remodeling that results in either a trained or a tolerant phenotype, characterized by hyper-responsiveness or hypo-responsiveness to secondary stimuli, respectively. We utilized CD14+ monocytes from virally suppressed PLWH and healthy controls for in vitro analysis following polarization of these cells toward a pro-inflammatory monocyte-derived macrophage (MDM) phenotype. We found that in PLWH-derived MDMs, pro-inflammatory signals (TNFA, IL6, IL1B, miR-155-5p, and IDO1) dominate over negative feedback signals (NCOR2, GSN, MSC, BIN1, and miR-146a-5p), favoring an abnormally trained phenotype. The mechanism of this reduction in negative feedback involves the attenuated expression of IKZF1, a transcription factor required for de novo synthesis of RELA during LPS-induced inflammatory responses. Furthermore, restoring IKZF1 expression in PLWH-MDMs partially reinstated expression of negative regulators of inflammation and lowered the expression of pro-inflammatory cytokines. Overall, this mechanism may provide a link between dysfunctional immune responses and susceptibility to co-morbidities in PLWH with low or undetectable viral load.
Collapse
Affiliation(s)
- Celeste Faia
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Karlie Plaisance-Bonstaff
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Cecilia Vittori
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Dorota Wyczechowska
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Adam Lassak
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Mary Meyaski-Schluter
- Clinical and Translational Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Krzysztof Reiss
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Francesca Peruzzi
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States.,Department of Medicine and Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
4
|
Zhang Q, Li L, Lai Y, Zhao T. Silencing of SPP1 Suppresses Progression of Tongue Cancer by Mediating the PI3K/Akt Signaling Pathway. Technol Cancer Res Treat 2020; 19:1533033820971306. [PMID: 33174521 PMCID: PMC7672768 DOI: 10.1177/1533033820971306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: In the present study, we aimed to find an effective target for the treatment of tongue cancer using gene chip screening and signal pathway research. Methods: We used microarray screening and gene expression profile analyses to find important differentially expressed genes in tongue cancer. We constructed a protein-protein interaction network, and used enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes to screen for important genes. We then silenced the genes of interest in SCC154 cells to study the relationship with the Phosphatidylinositol 3-kinase/Akt signal pathway. Western blot analyses, the 3-(4,5Dimethylthiazol-yl)-2,5Dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide (MTT) test, and immunofluorescence assays were used to compare the expression levels of Phosphatidylinositol 3-kinase/Akt signal pathway-related proteins, cell viability, and cell proliferation ability in normal SCC154 cells, Si-RNA SCC154 cells, and gene-silenced SCC154 cells. The scratch test, Transwell test, and western blotting were used to determine migration, invasion, and carcinogenesis. Results: Using GSE9844, GSE13601, and GSE31056 gene chips, we identified 93 upregulated genes and 76 downregulated genes in tongue cancer. Using the protein-protein interaction network and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, we further identified 47 differentially expressed genes. Using Kaplan-Meier plotter online tools, we also identified 3 genes (SPP1, Recombinant Human Secreted Phosphoprotein 1; PLAU, plasminogen activator urinary; and APP, amyloid precursor protein). Compared with normal SCC154 cells and Si-RNA control SCC154 cells, the expressions of Phosphatidylinositol 3-kinase/Akt pathway proteins in si-SPP1 SCC154 cells were significantly decreased (*P < 0.05), and the protein activities and proliferation abilities were also significantly decreased (*P < 0.05), while the migration ability, invasion ability, and cancer forming ability were significantly increased (*P < 0.05). Conclusion: Inhibition of the SPP1 gene may have a therapeutic effect on tongue cancer, and could be an effective target for the treatment of this disorder.
Collapse
Affiliation(s)
- Qiaoli Zhang
- Department of Stomatology, The First People's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Lifeng Li
- Department of Stomatology, The First People's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Yueli Lai
- Department of Stomatology, The First People's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| | - Tong Zhao
- Department of Stomatology, The First People's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang, China
| |
Collapse
|