1
|
Yau A, Landolina M, Snow MA, Mesci P, Williams B, Hoying J, Duflo D, Wu H, Stoudemire J, Hernandez R, Chen Y. In-Space Fabrication of Janus Base Nano-Matrix for Improved Assembly and Bioactivities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584527. [PMID: 38559052 PMCID: PMC10979921 DOI: 10.1101/2024.03.11.584527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In-space manufacturing of nanomaterials is a promising concept while having limited successful examples. DNA-inspired Janus base nanomaterials (JBNs), used for therapeutics delivery and tissue regeneration, are fabricated via a controlled self-assembly process in water at ambient temperature, making them highly suitable for in-space manufacturing. For the first time, we designed and accomplished the production of JBNs on orbit during the Axiom-2 (Ax-2) mission demonstrating great promising and benefits of in-space manufacturing of nanomaterials.
Collapse
|
2
|
Zhai J, Cote T, Chen Y. Challenges and advances of the stability of mRNA delivery therapeutics. NUCLEIC ACID INSIGHTS 2024; 1:101-113. [PMID: 38903876 PMCID: PMC11189690 DOI: 10.18609/nai.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
mRNA therapeutics have garnered significant attention in the biomedical realm, showing immense potential across a spectrum of applications from COVID-19 to cancer treatments. Their ability to trigger precise protein expression, particularly in genome editing, is pivotal in minimizing off-target effects. At the core of mRNA therapy lies a dual-component system, comprising the mRNA itself and a delivery vehicle. The breakthrough success of novel COVID-19 vaccines has catapulted lipid nanoparticles to prominence as the preferred delivery vehicle. However, despite their US FDA approval and efficacy, lipid nanoparticles face a significant challenge: poor stability at room temperature, which limits their applications in various geographic regions with disparities in infrastructure and technology. This review aims to dissect the issue of stability inherent in lipid nanoparticles and other mRNA delivery platforms such as polymer-based materials and protein derivative materials. We herein endeavor to unravel the factors contributing to their instability and explore potential strategies to enhance their stability. By doing so, we provide a comprehensive analysis of the current landscape of mRNA delivery systems, highlighting both their successes and limitations, and paving the way for future advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Jin Zhai
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Trystin Cote
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Zhang W, Chen Y. Self-assembled Janus base nanotubes: chemistry and applications. Front Chem 2024; 11:1346014. [PMID: 38374885 PMCID: PMC10876059 DOI: 10.3389/fchem.2023.1346014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/26/2023] [Indexed: 02/21/2024] Open
Abstract
Janus base nanotubes are novel, self-assembled nanomaterials. Their original designs were inspired by DNA base pairs, and today a variety of chemistries has developed, distinguishing them as a new family of materials separate from DNA origami, carbon nanotubes, polymers, and lipids. This review article covers the principal examples of self-assembled Janus base nanotubes, which are driven by hydrogen-bond and π-π stacking interactions in aqueous environments. Specifically, self-complementary hydrogen bonds organize molecules into ordered arrays, forming macrocycles, while π-π interactions stack these structures to create tubular forms. This review elucidates the molecular interactions that govern the assembly of nanotubes and advances our understanding of nanoscale self-assembly in water.
Collapse
Affiliation(s)
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Faber L, Yau A, Chen Y. Translational biomaterials of four-dimensional bioprinting for tissue regeneration. Biofabrication 2023; 16:012001. [PMID: 37757814 PMCID: PMC10561158 DOI: 10.1088/1758-5090/acfdd0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023]
Abstract
Bioprinting is an additive manufacturing technique that combines living cells, biomaterials, and biological molecules to develop biologically functional constructs. Three-dimensional (3D) bioprinting is commonly used as anin vitromodeling system and is a more accurate representation ofin vivoconditions in comparison to two-dimensional cell culture. Although 3D bioprinting has been utilized in various tissue engineering and clinical applications, it only takes into consideration the initial state of the printed scaffold or object. Four-dimensional (4D) bioprinting has emerged in recent years to incorporate the additional dimension of time within the printed 3D scaffolds. During the 4D bioprinting process, an external stimulus is exposed to the printed construct, which ultimately changes its shape or functionality. By studying how the structures and the embedded cells respond to various stimuli, researchers can gain a deeper understanding of the functionality of native tissues. This review paper will focus on the biomaterial breakthroughs in the newly advancing field of 4D bioprinting and their applications in tissue engineering and regeneration. In addition, the use of smart biomaterials and 4D printing mechanisms for tissue engineering applications is discussed to demonstrate potential insights for novel 4D bioprinting applications. To address the current challenges with this technology, we will conclude with future perspectives involving the incorporation of biological scaffolds and self-assembling nanomaterials in bioprinted tissue constructs.
Collapse
Affiliation(s)
- Leah Faber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Anne Yau
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, United States of America
| |
Collapse
|
5
|
Nagri S, Rice O, Chen Y. Nanomedicine strategies for central nervous system (CNS) diseases. FRONTIERS IN BIOMATERIALS SCIENCE 2023; 2:1215384. [PMID: 38938851 PMCID: PMC11210682 DOI: 10.3389/fbiom.2023.1215384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The blood-brain barrier (BBB) is a crucial part of brain anatomy as it is a specialized, protective barrier that ensures proper nutrient transport to the brain, ultimately leading to regulating proper brain function. However, it presents a major challenge in delivering pharmaceuticals to treat central nervous system (CNS) diseases due to this selectivity. A variety of different vehicles have been designed to deliver drugs across this barrier to treat neurodegenerative diseases, greatly impacting the patient's quality of life. The two main types of vehicles used to cross the BBB are polymers and liposomes, which both encapsulate pharmaceuticals to allow them to transcytose the cells of the BBB. For Alzheimer's disease, Parkinson's disease, multiple sclerosis, and glioblastoma brain cancer, there are a variety of different nanoparticle treatments in development that increase the bioavailability and targeting ability of existing drugs or new drug targets to decrease symptoms of these diseases. Through these systems, nanomedicine offers a new way to target specific tissues, especially for the CNS, and treat diseases without the systemic toxicity that often comes with medications used currently.
Collapse
Affiliation(s)
- Shreya Nagri
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Olivia Rice
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
6
|
Yau A, Jogdand A, Chen Y. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth. FRONTIERS IN SPACE TECHNOLOGIES 2023; 4:1176943. [PMID: 38915909 PMCID: PMC11195916 DOI: 10.3389/frspt.2023.1176943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.
Collapse
Affiliation(s)
| | | | - Yupeng Chen
- Nanomedicine Lab, Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Rice O, Surian A, Chen Y. Modeling the blood-brain barrier for treatment of central nervous system (CNS) diseases. J Tissue Eng 2022; 13:20417314221095997. [PMID: 35586265 PMCID: PMC9109496 DOI: 10.1177/20417314221095997] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/06/2022] [Indexed: 12/14/2022] Open
Abstract
The blood-brain barrier (BBB) is the most specialized biological barrier in the body. This configuration of specialized cells protects the brain from invasion of molecules and particles through formation of tight junctions. To learn more about transport to the brain, in vitro modeling of the BBB is continuously advanced. The types of models and cells selected vary with the goal of each individual study, but the same validation methods, quantification of tight junctions, and permeability assays are often used. With Transwells and microfluidic devices, more information regarding formation of the BBB has been observed. Disease models have been developed to examine the effects on BBB integrity. The goal of modeling is not only to understand normal BBB physiology, but also to create treatments for diseases. This review will highlight several recent studies to show the diversity in model selection and the many applications of BBB models in in vitro research.
Collapse
Affiliation(s)
- Olivia Rice
- Department of Biomedical Engineering, University of
Connecticut, Storrs, CT, USA
| | - Allison Surian
- Department of Biomedical Engineering, University of
Connecticut, Storrs, CT, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of
Connecticut, Storrs, CT, USA
| |
Collapse
|
8
|
Zhou L, Zhang W, Lee J, Kuhn L, Chen Y. Controlled Self-Assembly of DNA-Mimicking Nanotubes to Form a Layer-by-Layer Scaffold for Homeostatic Tissue Constructs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51321-51332. [PMID: 34663065 PMCID: PMC8982526 DOI: 10.1021/acsami.1c13345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Various biomaterial scaffolds have been developed for improving stem cell anchorage and function in tissue constructs for in vitro and in vivo uses. Growth factors are typically applied to scaffolds to mediate cell differentiation. Conventionally, growth factors are not strictly localized in the scaffolds; thus, they may leak into the surrounding environment, causing undesired side effects on tissues or cells. Hence, there is a need for improved tissue construct strategies based on highly localized drug delivery and a homeostatic microenvironment. This study developed an injectable nanomatrix (NM) scaffold with a layer-by-layer structure inside each nanosized fiber of the scaffold based on controlled self-assembly at the molecular level. The NM was hierarchically assembled from Janus base nanotubes (JBNTs), matrilin-3, and transforming growth factor β-1 (TGF-β1) via bioaffinity. JBNTs, which form the NM backbone, are novel DNA-inspired nanomaterials that mimic the natural helical nanostructures of collagens. The chondrogenic factor, TGF-β1, was enveloped in the inner layer inside the NM fibers to prevent its release. Matrilin-3 was incorporated into the outer layer to create a cartilage-mimicking microenvironment and to maintain tissue homeostasis. Interestingly, human mesenchymal stem cells (hMSCs) had a strong preference to anchor along the NM fibers and formed a localized homeostatic microenvironment. Therefore, this NM has successfully generated highly organized structures via molecular self-assembly and achieved localized drug delivery and stem cell anchorage for homeostatic tissue constructs.
Collapse
Affiliation(s)
- Libo Zhou
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Wuxia Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jinhyung Lee
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Liisa Kuhn
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|