1
|
Allosteric inhibition of SHP2 rescues functional T-cell abnormalities in SAP deficiency. J Allergy Clin Immunol 2022; 150:1507-1516.e7. [PMID: 35839843 DOI: 10.1016/j.jaci.2022.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency arising from SH2D1A mutations leading to loss of SLAM-associated protein (SAP). SAP is an intracellular adaptor protein that binds to SLAM family receptors and is expressed in specific lymphoid lineages. In T cells, SAP relays activatory signals from the T-cell receptor but in its absence SH2 containing protein tyrosine phosphase-1 (SHP1), SH2 containing protein tyrosine phosphase-2 (SHP2), and SH2 containing inositol 5'-phosphatase proteins (SHIP) induce T-cell inhibitory signals leading to abnormal T-cell responses. This results in severe clinical manifestations including immune dysregulation, dysgammaglobulinemia, lymphoma, and hemophagocytic lymphohistiocytosis. Current treatment relies on supportive therapies including immunoglobulin replacement and symptom-directed therapy, with hematopoietic stem cell transplant offering the only curative option. OBJECTIVES As most XLP symptoms are due to defective T-cell function, this study investigated whether inhibition of SHP2 can restore cellular function in the absence of SAP. METHODS Healthy donor and XLP patient T cells were activated with anti-CD3/CD28 in T-cell media supplemented with a SHP2 inhibitor (RMC-4550 in vitro for 24 hours) and functional assays were performed to assess follicular TH (TFH) cell function, CD8 cytotoxicity, and sensitivity to restimulation-induced cell death. Additionally, SAP-deficient (SAPy/-) mice were treated with RMC-4550 before T-cell mediated challenge with 4-hydroxy-3-nitrophenylacetly conjugated chicken gammaglobulin and subsequent assessment of humoral immunity analyzing TFH cell population, germinal center formation, and antigen-dependent immunoglobulin secretion. RESULTS This study shows that the use of RMC-4550 restores T-cell function in XLP patient cells and a SAPy/- model, demonstrating restoration of TFH cell function through immunoglobulin and cytokine secretion analysis alongside rescue of cytotoxicity and restimulation-induced cell death. CONCLUSIONS These data suggest that SHP2 inhibitors could offer a novel and effective targeted treatment approach for patients with XLP.
Collapse
|
2
|
Raveendra-Panickar D, Finlay D, Layng FI, Lambert LJ, Celeridad M, Zhao M, Barbosa K, De Backer LJS, Kwong E, Gosalia P, Rodiles S, Holleran J, Ardecky R, Grotegut S, Olson S, Hutchinson JH, Pasquale EB, Vuori K, Deshpande AJ, Cosford NDP, Tautz L. Discovery of novel furanylbenzamide inhibitors that target oncogenic tyrosine phosphatase SHP2 in leukemia cells. J Biol Chem 2022; 298:101477. [PMID: 34896393 PMCID: PMC8760490 DOI: 10.1016/j.jbc.2021.101477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022] Open
Abstract
Disturbance of the dynamic balance between tyrosine phosphorylation and dephosphorylation of signaling molecules, controlled by protein tyrosine kinases and protein tyrosine phosphatases (PTPs), is known to lead to the development of cancer. While most approved targeted cancer therapies are tyrosine kinase inhibitors, PTPs have long been stigmatized as undruggable and have only recently gained renewed attention in drug discovery. One PTP target is the Src-homology 2 domain-containing phosphatase 2 (SHP2). SHP2 is implicated in tumor initiation, progression, metastasis, and treatment resistance, primarily because of its role as a signaling nexus of the extracellular signal-regulated kinase pathway, acting upstream of the small GTPase Ras. Efforts to develop small molecules that target SHP2 are ongoing, and several SHP2 allosteric inhibitors are currently in clinical trials for the treatment of solid tumors. However, while the reported allosteric inhibitors are highly effective against cells expressing WT SHP2, none have significant activity against the most frequent oncogenic SHP2 variants that drive leukemogenesis in several juvenile and acute leukemias. Here, we report the discovery of novel furanylbenzamide molecules as inhibitors of both WT and oncogenic SHP2. Importantly, these inhibitors readily cross cell membranes, bind and inhibit SHP2 under physiological conditions, and effectively decrease the growth of cancer cells, including triple-negative breast cancer cells, acute myeloid leukemia cells expressing either WT or oncogenic SHP2, and patient-derived acute myeloid leukemia cells. These novel compounds are effective chemical probes of active SHP2 and may serve as starting points for therapeutics targeting WT or mutant SHP2 in cancer.
Collapse
Affiliation(s)
- Dhanya Raveendra-Panickar
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Darren Finlay
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Fabiana Izidro Layng
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lester J Lambert
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Maria Celeridad
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Ming Zhao
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Karina Barbosa
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Laurent J S De Backer
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Elizabeth Kwong
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Palak Gosalia
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Socorro Rodiles
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John Holleran
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Robert Ardecky
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Stefan Grotegut
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Steven Olson
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - John H Hutchinson
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Elena B Pasquale
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Kristiina Vuori
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Aniruddha J Deshpande
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Nicholas D P Cosford
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Lutz Tautz
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| |
Collapse
|