1
|
Cifani P, Kentsis A. Quantitative Cell Proteomic Atlas: Pathway-Scale Targeted Mass Spectrometry for High-Resolution Functional Profiling of Cell Signaling. J Proteome Res 2022; 21:2535-2544. [PMID: 36154077 PMCID: PMC10494574 DOI: 10.1021/acs.jproteome.2c00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In spite of extensive studies of cellular signaling, many fundamental processes such as pathway integration, cross-talk, and feedback remain poorly understood. To enable integrated and quantitative measurements of cellular biochemical activities, we have developed the Quantitative Cell Proteomics Atlas (QCPA). QCPA consists of panels of targeted mass spectrometry assays to determine the abundance and stoichiometry of regulatory post-translational modifications of sentinel proteins from most known physiologic and pathogenic signaling pathways in human cells. QCPA currently profiles 1 913 peptides from 469 effectors of cell surface signaling, apoptosis, stress response, gene expression, quiescence, and proliferation. For each protein, QCPA includes triplets of isotopically labeled peptides covering known post-translational regulatory sites to determine their stoichiometries and unmodified protein regions to measure total protein abundance. The QCPA framework incorporates analytes to control for technical variability of sample preparation and mass spectrometric analysis, including TrypQuant, a synthetic substrate for accurate quantification of proteolysis efficiency for proteins containing chemically modified residues. The ability to precisely and accurately quantify most known signaling pathways should enable improved chemoproteomic approaches for the comprehensive analysis of cell signaling and clinical proteomics of diagnostic specimens. QCPA is openly available at https://qcpa.mskcc.org.
Collapse
Affiliation(s)
- Paolo Cifani
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
| | - Alex Kentsis
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065 USA
- Tow Center for Developmental Oncology, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, NY, 10065 USA
- Departments of Pediatrics, Pharmacology, and Physiology & Biophysics, Weill Medical College of Cornell University, NY, 10065 USA
| |
Collapse
|
2
|
Martin K, Zhang T, Lin TT, Habowski AN, Zhao R, Tsai CF, Chrisler WB, Sontag RL, Orton DJ, Lu YJ, Rodland KD, Yang B, Liu T, Smith RD, Qian WJ, Waterman ML, Wiley HS, Shi T. Facile One-Pot Nanoproteomics for Label-Free Proteome Profiling of 50-1000 Mammalian Cells. J Proteome Res 2021; 20:4452-4461. [PMID: 34351778 PMCID: PMC8945255 DOI: 10.1021/acs.jproteome.1c00403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent advances in sample preparation enable label-free mass spectrometry (MS)-based proteome profiling of small numbers of mammalian cells. However, specific devices are often required to downscale sample processing volume from the standard 50-200 μL to sub-μL for effective nanoproteomics, which greatly impedes the implementation of current nanoproteomics methods by the proteomics research community. Herein, we report a facile one-pot nanoproteomics method termed SOPs-MS (surfactant-assisted one-pot sample processing at the standard volume coupled with MS) for convenient robust proteome profiling of 50-1000 mammalian cells. Building upon our recent development of SOPs-MS for label-free single-cell proteomics at a low μL volume, we have systematically evaluated its processing volume at 10-200 μL using 100 human cells. The processing volume of 50 μL that is in the range of volume for standard proteomics sample preparation has been selected for easy sample handling with a benchtop micropipette. SOPs-MS allows for reliable label-free quantification of ∼1200-2700 protein groups from 50 to 1000 MCF10A cells. When applied to small subpopulations of mouse colon crypt cells, SOPs-MS has revealed protein signatures between distinct subpopulation cells with identification of ∼1500-2500 protein groups for each subpopulation. SOPs-MS may pave the way for routine deep proteome profiling of small numbers of cells and low-input samples.
Collapse
Affiliation(s)
| | | | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Amber N. Habowski
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California 92697, United States
| | - Rui Zhao
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - William B. Chrisler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ryan L. Sontag
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daniel J. Orton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yong-Jie Lu
- Centre for Cancer Biomarker and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Karin D. Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Bin Yang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Bioproducts, Sciences & Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, Washington 99354, United States
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Marian L. Waterman
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, California 92697, United States
| | - H. Steven Wiley
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tujin Shi
- Corresponding Author Tujin Shi – Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Phone: (509) 371-6579;
| |
Collapse
|