1
|
Uceda AB, Mariño L, Casasnovas R, Adrover M. An overview on glycation: molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys Rev 2024; 16:189-218. [PMID: 38737201 PMCID: PMC11078917 DOI: 10.1007/s12551-024-01188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/14/2024] Open
Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic interventions against it.
Collapse
Affiliation(s)
- Ana Belén Uceda
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Laura Mariño
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Rodrigo Casasnovas
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| | - Miquel Adrover
- Departament de Química, Universitat de Les Illes Balears, Health Research Institute of the Balearic Islands (IdISBa), Ctra. Valldemossa Km 7.5, 07122 Palma, Spain
| |
Collapse
|
2
|
Yue K, Mao B, Tang X, Zhang Q, Zhao J, Cui S, Chen W. Recent updates in anti-glycation strategies: selection of natural products and lactic acid bacteria as potential inhibitors based on the multi-pathway anti-glycation targets. Crit Rev Food Sci Nutr 2023; 64:11026-11043. [PMID: 37417364 DOI: 10.1080/10408398.2023.2232015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The prevalence of high-sugar diets and unhealthy habits exacerbates the production of advanced glycation end products (AGEs) in the body. When AGEs excessively accumulate in the body, they accelerate the aging process while directly or indirectly causing other complications that can seriously damage the body. Prevention of glycation damage is gaining increasing attention; however, a systematic strategy to combat glycation and specific glycation inhibitors is still lacking. By analyzing the process of glycation damage, we suggest that glycation damage can be mitigated by the inhibition of AGEs production, binding to proteins, and binding to receptors for advanced glycation end products, as well as the attenuation of downstream linkage reactions. This review summarizes the process of glycation damage. According to each step of the process, the review presents the corresponding anti-glycation strategies. Based on recent anti-glycation studies, we support the fabrication of glycation inhibitors by using natural plant products and fermentation products of lactic acid bacteria that partially exhibit anti-glycation properties. This review summarizes the mechanisms by which these dietary ingredients perform anti-glycation functions, providing relevant research evidence. We hope that this review will support and assist subsequent investigations in the development of anti-glycation inhibitors.
Collapse
Affiliation(s)
- Kaiyan Yue
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Yoo JH, Lee JS, Jang JH, Jung JI, Kim EJ, Choi SY. AGEs Blocker™ (Goji Berry, Fig, and Korean Mint Mixed Extract) Inhibits Skin Aging Caused by Streptozotocin-Induced Glycation in Hairless Mice. Prev Nutr Food Sci 2023; 28:134-140. [PMID: 37416794 PMCID: PMC10321449 DOI: 10.3746/pnf.2023.28.2.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 07/08/2023] Open
Abstract
Glycation is a cause of skin aging. This study investigated in a glycation-induced skin aging mouse model the effects on skin and mechanism of action of AGEs Blocker™ (AB), which contains goji berry, fig, and Korean mint mixed extract. This study sought to demonstrate the antiglycation effect of streptozotocin, thereby improving skin aging, by measuring advanced glycation end products (AGEs) and various skin parameters, including collagen; matrix metalloproteinases (MMPs); inflammatory cytokines; activities of oxidative enzymes; and skin wrinkles, elasticity, and hydration. This study found that skin wrinkles, elasticity, and hydration improved with AB. Particularly, the oral administration of AB suppressed AGEs, receptors of AGEs, and carboxymethyl lysine in blood and skin tissue. In addition, AB increased the activities of antioxidative enzymes, reduced inflammatory cytokines, suppressed MMP-9 expression, and increased the contents of collagen and hyaluronic acid, ultimately suppressing skin wrinkles and increasing skin elasticity and hydration. Therefore, AB can inhibit skin aging through its antiglycation effect and is thus considered a good ingredient for skin care products.
Collapse
Affiliation(s)
- Jin Hee Yoo
- Functional Ingredient Development Team, COSMAX NS, Inc., Gyeonggi 13486 Korea
| | - Je Sung Lee
- New Technology Business Team, COSMAX NS, Inc., Gyeonggi 13486 Korea
| | - Ji Hwan Jang
- New Technology Business Team, COSMAX NS, Inc., Gyeonggi 13486 Korea
| | - Jae In Jung
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Gangwon 24252, Korea
| | - Eun Ji Kim
- Industry coupled Cooperation Center for Bio Healthcare Materials, Hallym University, Gangwon 24252, Korea
| | - Su-Young Choi
- Functional Ingredient Development Team, COSMAX NBT, Inc., Gyeonggi 13487, Korea
| |
Collapse
|
4
|
Gu MJ, Lee HW, Yoo G, Kim D, Choi IW, Kim Y, Ha SK. Protective effect of Schizonepeta tenuifolia Briq. ethanolic extract against UVB-induced skin aging and photodamage in hairless mice. Front Pharmacol 2023; 14:1176073. [PMID: 37351505 PMCID: PMC10283040 DOI: 10.3389/fphar.2023.1176073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
The purpose of this study was to illuminate the mechanism by which Schizonepeta tenuifolia Briq. (ST) ethanolic extract prevents skin photoaging in HR-1 hairless mice (HR-1). The ST ethanolic extract alleviated wrinkle formation, epidermal skin thickness, and collagen degradation in skin tissues of ultraviolet B (UVB)-irradiated HR-1 mice. Expression of matrix metalloproteinases (a wrinkle-related marker) was reduced, and tissue inhibitor of metalloproteinase 1 expression was upregulated following application of ST ethanolic extract. Furthermore, skin dehydration and levels of hyaluronidase-1 and -2 (enzymes that break hyaluronic acid) were decreased. Moreover, protein expression of hyaluronan synthases (markers of skin hydration) and hyaluronic acid levels increased following ST ethanolic extract treatment in UVB-induced photoaging HR-1 mice. In addition, the phosphorylation of mitogen-activated protein kinases (MAPKs), including p38, extracellular signal-regulated kinase, and Jun N-terminal kinase was suppressed, and expression of nuclear factor-kappa was reduced. Treatment with ST ethanolic extract also reduced advanced glycation end product (AGE) accumulation and expression of the receptor for AGE (RAGE) in skin tissue. These results suggest that ST ethanolic extract moderates skin damage caused by UVB irradiation via regulating the expression of wrinkle- and hydration-related proteins, MAPKs, and RAGE.
Collapse
Affiliation(s)
- Min Ji Gu
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Hee-Weon Lee
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- New Drug Development Venter, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Guijae Yoo
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Donghwan Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - In-Wook Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoonsook Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang Keun Ha
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea
- Division of Food Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
5
|
Yoon S, Kim M, Shin S, Woo J, Son D, Ryu D, Yoo J, Park D, Jung E. Effect of Cirsium japonicum Flower Extract on Skin Aging Induced by Glycation. Molecules 2022; 27:molecules27072093. [PMID: 35408493 PMCID: PMC9000855 DOI: 10.3390/molecules27072093] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Advanced glycation end products (AGEs) have recently been increasingly discussed as one factor of skin aging. In this study, we investigated the effects of Cirsium japonicum flower (CFE) extract on glycation in relation to skin aging and skin elasticity. Moreover, we learned the main active constituent of CFE that has effects against glycation. To demonstrate the effects of CFE on glycation, we carried out an in vitro glycation study, 3-dimensional culture, and clinical study. As a result, CFE inhibited formation of AGEs in both bovine serum albumin (BSA)/glucose glycation system and aldehyde-derived glycation system. Moreover, CFE reduced Nε-(carboxymethyl), lysine (CML), and carbonylated proteins that increased by glycation. Furthermore, CFE broke crosslinks of collagen–AGEs and inhibited the increase of matrix metalloproteinase-1 (MMP-1) gene expression by AGEs. In the 3D culture condition, CFE restored the reduction of collagen gel contraction by glycation. Moreover, apigenin was detected as the main active constituent in CFE that has anti-glycation effects. In the clinical study, we confirmed that CFE has effects on skin wrinkles and skin elasticity. Our findings suggest that CFE can be used as a cosmetic or cosmeceutical ingredient for improving skin elasticity and wrinkles. Regulation of AGEs can be an interesting target for anti-aging.
Collapse
|
6
|
A Dunaliella salina Extract Counteracts Skin Aging under Intense Solar Irradiation Thanks to Its Antiglycation and Anti-Inflammatory Properties. Mar Drugs 2022; 20:md20020104. [PMID: 35200634 PMCID: PMC8879334 DOI: 10.3390/md20020104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/17/2022] Open
Abstract
Glycation, and the resulting buildup of advanced glycation end products (AGEs), is recognized as a key driver of cumulative skin damage and skin aging. Dunaliella salina is a halophile microalga adapted to intense solar radiation through the production of carotenoids. We present a natural supercritical CO2 extract of Dunaliella salina rich in the colorless carotenoids phytoene and phytofluene. The extract exhibited antiglycation and anti-inflammatory activities in ex vivo testing, showing strongly reduced formation of N-ε-carboxy-methyl-lysine with exposure to methylglyoxal, reduced AGE receptor levels, and significantly reduced interleukins 6 and 8. In a placebo-controlled clinical study under intense solar exposure, the extract significantly reduced the skin’s glycation scores and its sensitivity to histamine; key skin aging parameters were also significantly improved vs. placebo, including wrinkle counts and spots. These results demonstrate the value of this Dunaliella salina extract, rich in colorless carotenoids, as an antiglycative, anti-inflammatory, and antiaging active ingredient, including in high-irradiation contexts.
Collapse
|
7
|
Functional Ingredients and Food Preservative in Immature Persimmon “Tekka-Kaki”. Processes (Basel) 2021. [DOI: 10.3390/pr9111989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Immature persimmons are unripe fruits that are cut off during the persimmon cultivation process and immediately discarded, amounting to an annual fruit loss of approximately 100 to 400 kg per 1000 m2. The purpose of this study was to make effective use of unused resources, namely, immature persimmons, and attempt to use them as food additives. In this study, we studied the Tone Wase (fully astringent persimmon) and Fuyu (fully sweet persimmon) cultivars. As a result, we performed a component analysis of the immature persimmons, isolating 12 compounds, of which two were newly identified. Differences in the components and their contents were found between cultivars and between the peel and flesh. To effectively use immature persimmons as food for the elderly, we searched for active substances that inhibit AGE formation and found that extracts of immature persimmons and isolated compounds showed high activity. In particular, high activity was observed for catechin and its polymeric form, procyanidin. Regarding the inhibition of aroma deterioration, 5 mg/L of gallic acid in octadecane was found to be the optimal condition for the inhibition of citral deterioration. As for antimicrobial activity, we found that extracts at a concentration of 500 mg/L had no antimicrobial effect. Based on these findings, we made a microencapsulation process, and plan to advance to the clinical trial study in future. These findings confirmed the effectiveness of immature persimmons, which are an unused resource, and reveal their potential as a food for the elderly and as a food additive in other food products, which we hope will lead to new industrial innovations.
Collapse
|
8
|
In Vitro Cultured Melissa officinalis Cells as Effective Ingredient to Protect Skin against Oxidative Stress, Blue Light, and Infrared Irradiations Damages. COSMETICS 2021. [DOI: 10.3390/cosmetics8010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Skin is being increasingly exposed to artificial blue light due to the extensive use of electronic devices, which can induce cell oxidative stress, causing signs of early photo aging. The Melissa officinalis phytocomplex is a new standardized cosmetic ingredient obtained by an in vitro plant cell culture with a high content of rosmarinic acid. In this study, we examine the activity of the Melissa officinalis phytocomplex to protect skin against blue light and infrared damages, evaluating the ROS (Radical Oxygen Species) level in keratinocyte cell line from human skin (HaCaT) and Nrf2 (Nuclear factor erythroid 2-related factor 2), elastin, and MMP1 (Matrix Metalloproteinase 1) immunostaining in living human skin explants ex vivo. This phytocomplex demonstrates antioxidant activity by reducing ROS production and thus the oxidant damage of the skin caused by UV and blue light exposure. In addition, it inhibits blue light-induced Nrf2 transcriptional activity, IR-induced elastin alteration, and IR-induced MMP-1 release. This Melissa officinalis phytocomplex is a new innovative active ingredient for cosmetic products that is able to protect skin against light and screen exposure damages and oxidative stress.
Collapse
|
9
|
Yasuda M, Ikeoka M, Kondo SI. Skin-related enzyme inhibitory activity by hydrolyzable polyphenols in water chestnut (Trapa natans) husk. Biosci Biotechnol Biochem 2021; 85:666-674. [PMID: 33590040 DOI: 10.1093/bbb/zbaa076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023]
Abstract
Water chestnut is a floating leaf plant native to Asia and Europe. Its fruit has long been used as an edible and herbal medicine. Water chestnut contains many polyphenols and its consumption can prevent lifestyle-related diseases because it has a suppressive effect on postprandial blood glucose elevation; however, its suitability as a cosmetic material is unknown. Therefore, this study aimed at investigating the antiaging effect of polyphenols contained in the husk of the devil water chestnut (Trapa natans). Six hydrolyzable polyphenols-1,6-di-O-galloyl-β-d-glucopyranose, 1,2,6-tri-O-galloyl-β-d-glucopyranose, 1,6-di-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-β-d-glucopyranose (nobotanin D), eugeniin, 1,2,3,6-tetra-O-galloyl-β-d-glucopyranose, and trapain-were collected and isolated from the water chestnut husk. These polyphenols showed high antioxidant and antiglycation activities. In addition, inhibitory activities against hyaluronidase, elastase, and collagenase were observed. Especially, eugeniin and trapain, which have many gallic acids and a hexahydroxy-biphenyl group, showed high inhibitory activities. Thus, the polyphenols in water chestnut are beneficial for antiaging effects.
Collapse
Affiliation(s)
- Midori Yasuda
- Department of Health and Nutrition Sciences, Nishikyushu University, Kanzaki, Saga, Japan
| | | | - Shin-Ichi Kondo
- Laboratory of Pharmaceutical Physical Chemistry, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
10
|
Inhibitory effects of skin permeable glucitol-core containing gallotannins from red maple leaves on elastase and their protective effects on human keratinocytes. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Freitas LD, Valli M, Dametto AC, Pennacchi PC, Andricopulo AD, Maria-Engler SS, Bolzani VS. Advanced Glycation End Product Inhibition by Alkaloids from Ocotea paranapiacabensis for the Prevention of Skin Aging. JOURNAL OF NATURAL PRODUCTS 2020; 83:649-656. [PMID: 32134650 DOI: 10.1021/acs.jnatprod.9b01083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A bioassay-guided study aiming at identifying inhibitors of the glycation process on the leaves of Ocotea paranapiacabensis afforded four benzylisoquinoline alkaloids (1-4), with 1 and 2 identified as new naturals products, while 3 and 4 were previously described in the literature, with 3 being identified as magnocurarine. Purification was performed by column chromatography and high-performance liquid chromatography. The structures of the isolated compounds were elucidated by spectroscopic methods including UV, NMR, and HRMS. The process of skin aging has been recently associated with advanced glycation end products (AGEs), and strategies inhibiting their formation have been addressed by pharmaceutical companies for the development of novel antiaging compounds. Alkaloids 1-4 were evaluated for their potential to inhibit AGE formation and showed inhibition of 62.9%, 83.3%, 26.1%, and 98.2% (150 μM), respectively. The antiaging potential of compounds 1 and 4 were evaluated with a reconstructed human skin model in vitro, and results showed a decrease in dermis contraction (8.7% and 4.2% respectively for 1 and 4) when compared to the glycated control (57.4%). Additionally, absorption, distribution, metabolism, and excretion (ADME) and toxicity properties were predicted using in silico methods, and the results were considered significantly promising for alkaloids 1 and 4 to continue the development of these alkaloids with skincare properties.
Collapse
Affiliation(s)
- Larissa de Freitas
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Avenida Prof. Francisco Degni, 55, Araraquara, SP, Brazil
| | - Marilia Valli
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Avenida Prof. Francisco Degni, 55, Araraquara, SP, Brazil
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), Avenida João Dagnone, no. 1100, São Carlos, SP, Brazil
| | - Alessandra C Dametto
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Avenida Prof. Francisco Degni, 55, Araraquara, SP, Brazil
- Federal Institute of Education, Science and Technology of São Paulo, Rua Stéfano D'avassi, no. 625, Matão, SP, Brazil
| | - Paula C Pennacchi
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry (LQMC), Centre for Research and Innovation in Biodiversity and Drug Discovery (CIBFar), Institute of Physics of São Carlos, University of São Paulo (USP), Avenida João Dagnone, no. 1100, São Carlos, SP, Brazil
| | - Silvya S Maria-Engler
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Vanderlan S Bolzani
- Nuclei of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Avenida Prof. Francisco Degni, 55, Araraquara, SP, Brazil
| |
Collapse
|
12
|
Kumari N, Choudhary SB, Sharma HK, Singh BK, Kumar AA. Health-promoting properties of Corchorus leaves: A review. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Ahmad S, Farhan M. Impact of Non-Enzymatic Glycation in Neurodegenerative Diseases: Role of Natural Products in Prevention. ADVANCES IN NEUROBIOLOGY 2018; 12:125-51. [PMID: 27651252 DOI: 10.1007/978-3-319-28383-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-enzymatic protein glycosylation is the addition of free carbonyls to the free amino groups of proteins, amino acids, lipoproteins and nucleic acids resulting in the formation of early glycation products. The early glycation products are also known as Maillard reaction which undergoes dehydration, cyclization and rearrangement to form advanced glycation end-products (AGEs). By and large the researchers in the past have also established that glycation and the AGEs are responsible for most type of metabolic disorders, including diabetes mellitus, cancer, neurological disorders and aging. The amassing of AGEs in the tissues of neurodegenerative diseases shows its involvement in diseases. Therefore, it is likely that inhibition of glycation reaction may extend the lifespan of an individual. The hunt for inhibitors of glycation, mainly using in vitro models, has identified natural compounds able to prevent glycation, especially polyphenols and other natural antioxidants. Extrapolation of results of in vitro studies on the in vivo situation is not straightforward due to differences in the conditions and mechanism of glycation, and bioavailability problems. Nevertheless, existing data allow postulating that enrichment of diet in natural anti-glycating agents may attenuate glycation and, in consequence may halt the aging and neurological problems.
Collapse
Affiliation(s)
- Saheem Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-sciences, Integral University, Lucknow, UP, India.
| | - Mohammed Farhan
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-sciences, Integral University, Lucknow, UP, India
| |
Collapse
|
14
|
Tominaga K, Hongo N, Fujishita M, Takahashi Y, Adachi Y. Protective effects of astaxanthin on skin deterioration. J Clin Biochem Nutr 2017; 61:33-39. [PMID: 28751807 PMCID: PMC5525019 DOI: 10.3164/jcbn.17-35] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/01/2017] [Indexed: 11/22/2022] Open
Abstract
Astaxanthin is a carotenoid with potent antioxidant and anti-inflammatory activity. To evaluate the anti-inflammatory effect of astaxanthin on skin deterioration, we confirmed its role in epidermal-dermal interactions in vitro. Astaxanthin treatment suppressed ultraviolet B (UVB)-induced inflammatory cytokine secretion in keratinocytes, and matrix metalloproteinase-1 secretion by fibroblasts cultured in UVB-irradiated keratinocyte medium. To verify these findings, we conducted a 16-week clinical study with 65 healthy female participants. Participants were orally administered either a 6 mg or 12 mg dose of astaxanthin or a placebo. Wrinkle parameters and skin moisture content significantly worsened in the placebo group after 16 weeks. However, significant changes did not occur in the astaxanthin groups. Interleukin-1α levels in the stratum corneum significantly increased in the placebo and low-dose groups but not in the high-dose group between weeks 0 and 16. This study was performed in Japan from August to December, when changing environmental factors, such as UV and dryness, exacerbate skin deterioration. In conclusion, our study suggests that long-term prophylactic astaxanthin supplementation may inhibit age-related skin deterioration and maintain skin conditions associated with environmentally induced damage via its anti-inflammatory effect. (UMIN Clinical Trials Registry ID: UMIN000018550)
Collapse
Affiliation(s)
- Kumi Tominaga
- AstaReal Co., Ltd., 55 Yoko-hoonji, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0397, Japan
| | - Nobuko Hongo
- AstaReal Co., Ltd., 55 Yoko-hoonji, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0397, Japan
| | - Mayuko Fujishita
- AstaReal Co., Ltd., 55 Yoko-hoonji, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0397, Japan
| | - Yu Takahashi
- AstaReal Co., Ltd., 55 Yoko-hoonji, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0397, Japan
| | - Yuki Adachi
- AstaReal Co., Ltd., 55 Yoko-hoonji, Kamiichi-machi, Nakaniikawa-gun, Toyama 930-0397, Japan
| |
Collapse
|
15
|
Lee KH, Ng YP, Cheah PS, Lim CK, Toh MS. Molecular characterization of glycation-associated skin ageing: an alternative skin model to study in vitro antiglycation activity of topical cosmeceutical and pharmaceutical formulations. Br J Dermatol 2016; 176:159-167. [PMID: 27363533 DOI: 10.1111/bjd.14832] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Glycation is a nonenzymatic reaction that cross-links a sugar molecule and protein macromolecule to form advanced glycation products (AGEs) that are associated with various age-related disorders; thus glycation plays an important role in skin chronological ageing. OBJECTIVES To develop a novel in vitro skin glycation model as a screening tool for topical formulations with antiglycation properties and to further characterize, at the molecular level, the glycation stress-driven skin ageing mechanism. METHODS The glycation model was developed using human reconstituted full-thickness skin; the presence of Nε -(carboxymethyl) lysine (CML) was used as evidence of the degree of glycation. Topical application of emulsion containing a well-known antiglycation compound (aminoguanidine) was used to verify the sensitivity and robustness of the model. Cytokine immunoassay, quantitative real-time polymerase chain reaction and histological analysis were further implemented to characterize the molecular mechanisms of skin ageing in the skin glycation model. RESULTS Transcriptomic and cytokine profiling analyses in the skin glycation model demonstrated multiple biological changes, including extracellular matrix catabolism, skin barrier function impairment, oxidative stress and subsequently the inflammatory response. Darkness and yellowness of skin tone observed in the in vitro skin glycation model correlated well with the degree of glycation stress. CONCLUSIONS The newly developed skin glycation model in this study has provided a new technological dimension in screening antiglycation properties of topical pharmaceutical or cosmeceutical formulations. This study concomitantly provides insights into skin ageing mechanisms driven by glycation stress, which could be useful in formulating skin antiageing therapy in future studies.
Collapse
Affiliation(s)
- K H Lee
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| | - Y P Ng
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| | - P S Cheah
- Department of Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - C K Lim
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| | - M S Toh
- Wipro Skin Research and Innovation Centre, No. 7, Persiaran Subang Permai, Taman Perindustrian Subang, 47610, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
16
|
Han AR, Nam MH, Lee KW. Plantamajoside Inhibits UVB and Advanced Glycation End Products-Induced MMP-1 Expression by Suppressing the MAPK and NF-κB Pathways in HaCaT Cells. Photochem Photobiol 2016; 92:708-19. [DOI: 10.1111/php.12615] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Ah-Ram Han
- Department of Biotechnology; College of Life Science & Biotechnology; Korea University; Seoul Korea
| | - Mi-Hyun Nam
- Department of Biotechnology; College of Life Science & Biotechnology; Korea University; Seoul Korea
| | - Kwang-Won Lee
- Department of Biotechnology; College of Life Science & Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
17
|
Yokota M, Tokudome Y. Permeation of Hydrophilic Molecules across Glycated Skin Is Differentially Regulated by the Stratum Corneum and Epidermis-Dermis. Biol Pharm Bull 2016; 38:1383-8. [PMID: 26328494 DOI: 10.1248/bpb.b15-00372] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of glycation on skin permeation and accumulation of compounds were evaluated using an in vitro glycated skin model. Glycation of the skin of hairless mice was induced using vertical diffusion cells and incubation with phosphate-buffered saline containing 50 mM glyoxal for 24 h. Flux and accumulation in the skin were determined by applying hydrophilic and lipophilic molecules (Sodium fluorescein; FL-Na and Nile red, respectively) to this in vitro glycated skin model. Furthermore, to investigate the effect of glycation on epidermal-dermal barrier properties, we conducted diffusion experiments with FL-Na and fluorescein isothiocyanate-dextran using stratum corneum (SC)-stripped glycated skin. The in vitro glycated skin model demonstrated characteristic glycation alterations like a yellowish change in skin color and surface roughness. For low-molecular weight (MW) hydrophilic molecules, flux across glycated full-thickness skin was higher than that across normal skin, although there was no difference with lipophilic molecules. However, glycated epidermis-dermis showed lower flux, and the difference increased with the MW of the compound. Furthermore, the amount of high-MW hydrophilic molecules accumulated in glycated epidermis-dermis was decreased. These results suggest that glycated SC and epidermis-dermis differentially regulate the permeability of hydrophilic molecules and highlight the importance of controlling drug delivery by modifying the formulation or method of application depending on skin condition.
Collapse
Affiliation(s)
- Mami Yokota
- Laboratory of Dermatological Physiology, Faculty of Pharmaceutical Sciences, Josai University
| | | |
Collapse
|
18
|
Prevention of protein glycation by natural compounds. Molecules 2015; 20:3309-34. [PMID: 25690291 PMCID: PMC6272653 DOI: 10.3390/molecules20023309] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/14/2022] Open
Abstract
Non-enzymatic protein glycosylation (glycation) contributes to many diseases and aging of organisms. It can be expected that inhibition of glycation may prolong the lifespan. The search for inhibitors of glycation, mainly using in vitro models, has identified natural compounds able to prevent glycation, especially polyphenols and other natural antioxidants. Extrapolation of results of in vitro studies on the in vivo situation is not straightforward due to differences in the conditions and mechanism of glycation, and bioavailability problems. Nevertheless, available data allow to postulate that enrichment of diet in natural anti-glycating agents may attenuate glycation and, in consequence, ageing.
Collapse
|
19
|
Ajish K, Joseph N, Priya Rani M, Raghu K, Vineetha V, Radhakrishnan K. Synthesis and biological evaluation of carbohydrate appended hydrazinocyclopentenes with potent glycation and α-glucosidase inhibition activities. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|