1
|
Bioanalytical LC-MS/MS method for simultaneous estimation of atorvastatin, its major active metabolites and ezetimibe. Bioanalysis 2022; 14:1349-1363. [PMID: 36621870 DOI: 10.4155/bio-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background: Hyperlipidemia is one of the most common chronic diseases encountered globally, and atorvastatin (ATV) is mainly metabolized into two major active metabolites. Methodology: Hence, we aimed to estimate ATV and ezetimibe (EZE) simultaneously in the presence of ATV major and active metabolites using a validated LC-MS/MS method. Conclusion: The proposed method was linear (r2 >0.99), accurate (92.02-109.94%) and precise (CV% ≤14) over the concentration range of 0.50-120 ng/ml, 0.20-48 ng/ml, 0.50-120 ng/ml and 0.20-48 ng/ml for ATV, EZE, 2-hydroxy ATV and 4-hydroxy ATV, respectively. The applied liquid-liquid extraction gave rise to reliable extraction recoveries of 84.91 ± 1.14%, 85.20 ± 1.62%, 85.46 ± 0.41% and 105.46 ± 2.35% for ATV, EZE, 2-hydroxy ATV and 4-hydroxy ATV, respectively.
Collapse
|
2
|
Wadhwa K, Rana AC. A review on liquid chromatographic methods for the bioanalysis of atorvastatin. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-020-00146-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Abstract
Background
The unsatisfied clinical need has encouraged the development and validation of bioanalytical procedures for the quantification of drugs in biological samples because the monitoring of drug concentrations helps in personalizing the patient’s pharmacotherapy, assessing the adherence to therapy, and is also extensively useful for pharmacokinetics and drug-drug interactions studies.
Main Body
The present review aimed to provide insightful information about the various liquid chromatographic methods developed till 2019 for the analysis and quantification of atorvastatin, its metabolites, and co-administered drugs in the various biological matrices like the serum, plasma, and urine with special emphasis on sample preparation techniques applied before chromatographic analysis along with different chromatographic conditions and their validation data. A total of 88 published papers that have used liquid chromatography techniques to quantify atorvastatin in biological fluids are included in the study. Out of the total reported liquid chromatographic methods, 34% used UV spectrophotometer as a detector, and 55% used MS/MS as a detector. Whereas 38% of them used protein precipitation procedure, 33% applied liquid-liquid extraction approach, and 12% employed solid-phase extraction technique for sample preparation.
Conclusion
In the last decade, numerous bioanalytical procedures have been developed for the quantification of atorvastatin in different biological samples using liquid chromatographic techniques. Moreover, advancement in technology developed several new and advanced sample preparation approaches like dispersive liquid-liquid extraction, microextraction by packed sorbent, which have high recovery rates than conventional procedures. Thus, the summarized review may be consulted as an informative tool to support the optimization of new bioanalytical methods for the quantification of atorvastatin.
Collapse
|
3
|
Based on Multi-Activity Integrated Strategy to Screening, Characterization and Quantification of Bioactive Compounds from Red Wine. Molecules 2021; 26:molecules26216750. [PMID: 34771156 PMCID: PMC8587790 DOI: 10.3390/molecules26216750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
According to French Paradox, red wine was famous for the potential effects on coronary heart disease (CHD), but the specific compounds against CHD were unclear. Therefore, screening and characterization of bioactive compounds from red wine was extremely necessary. In this paper, the multi-activity integrated strategy was developed and validated to screen, identify and quantify active compounds from red wine by using ultra high performance liquid chromatography-fraction collector (UHPLC-FC), ultra fast liquid chromatography-quadrupole-time-of-flight/mass spectrometry (UFLC-Q-TOF/MS) and bioactive analysis. UHPLC-FC was employed to separate and collect the components from red wine, which was further identified by UFLC-Q-TOF/MS to acquire their structural information. Furthermore, the active fractions were tested for antioxidant activity, inhibitory activity against thrombin and lipase activities in vitro by the activity screening kit. As the results, there were 37 fractions had antioxidant activity, 22 fractions had thrombin inhibitory activity and 28 fractions had lipase inhibitory activity. Finally, 77 active components from red wine were screened and 12 ingredients out of them were selected for quantification based on the integration of multi-activity. Collectively, the multi-activity integrated strategy was helpful for the rapid and effective discovery of bioactive components, which provided reference for exploring the health care function of food.
Collapse
|
4
|
Thomas AB, Choudhary DC, Raje A, Nagrik SS. Pharmacokinetics and Pharmacodynamic Herb-Drug Interaction of Piperine with Atorvastatin in Rats. J Chromatogr Sci 2021; 59:371-380. [PMID: 33434916 DOI: 10.1093/chromsci/bmaa126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022]
Abstract
Herbals that are widely consumed as therapeutic alternatives to conventional drugs for cardiovascular diseases, may lead to herb-drug interactions (HDIs). Atorvastatin (ATR) is drug of choice for hyperlipidemia and is extensively metabolized through CYP3A4 enzyme. Thus, we postulate that concomitant administration of ATR with piperine (PIP, potent inhibitor of CYP3A4 enzyme)/ridayarishta (RID, cardiotonic herbal formulations containing PIP) may lead to potential HDI. A simple, accurate, sensitive high-performance liquid chromatography-photodiode array detection method using Kromasil-100 C18 column, mobile phase acetonitrile: 30 mM phosphate buffer (55:45 v/v) pH 4.5 with flow rate gradient programming was developed to study the potential HDI in rats. Method was found to be linear (2-100 ng/mL) with Lower Limit of Detection (LLOD) 2 ng/mL. The precision (%CV < 15%), accuracy (-1.0 to -10% R.E) with recoveries above 90% from rat plasma of ATR and IS were obtained. The pharmacokinetic (PK) interactions studies on co-administration of ATR (8.4 mg/kg, p.o.) with PIP (35 mg/kg, p.o.), demonstrated a threefold increase in Cmax of ATR (P < 0.01) with significant increase in AUC0-t/AUC0-∞ compared to ATR alone indicating potential PK-HDI. However co-administration of RID (4.2 mL/kg, p.o.) showed less significant changes (P > 0.05) indicating low HDI. The pharmacodynamic effects/interactions study (TritonX-100 induced hyperlipidemic model in rats) suggested no significant alterations in the lipid profile on co-administration of PIP/RID with ATR, indicating that there may be no significant pharmacodynamic interactions.
Collapse
Affiliation(s)
- Asha B Thomas
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Sant Tukaram Nagar, Pune, India
| | - Durga C Choudhary
- Department of Pharmaceutical Quality Assurance, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri, Sant Tukaram Nagar, Pune, India
| | - Amol Raje
- Clinical Candidate Optimization Department, Advinus Therapeutics Limited, Hingwadi, Pune, India
| | - Shatrughna S Nagrik
- Department of Pharmacology, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Sant Tukaram Nagar, Pimpri, Pune, India
| |
Collapse
|
5
|
Simultaneous Quantification of Aspirin, Its Metabolite Salicylic Acid, and Salvianolic Acid B in Human Plasma Using UPLC-MS/MS. Int J Anal Chem 2021. [DOI: 10.1155/2021/6620868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salvianolic acid B is the main active ingredient in salvianolate injection, which is produced by extracting danshen, the most commonly used Chinese herbal medicine for cardiovascular treatment. Clinically, salvianolate injection and aspirin are commonly combined to treat coronary heart diseases in patients with stable angina. To support clinical studies on drug-drug interactions (DDIs) between salvianolate injection and aspirin, a rapid and sensitive UPLC-MS/MS method for the simultaneous determination of aspirin (acetylsalicylic acid), its metabolite salicylic acid, and salvianolic acid B in human plasma was developed. The analytes and internal standard were extracted from the acidified plasma by liquid-liquid extraction with ethyl acetate and then separated by gradient elution with acetonitrile/0.5% formic acid in water on a C18 column. Salvianolic acid B, acetylsalicylic acid, and salicylic acid were quantified in multiple-reaction monitoring mode with negative ion electrospray ionization. The method was fully validated according to the current regulatory guidance for bioanalysis. Calibration curves in the range 5–6000 ng/mL, all with correlation coefficients greater than 0.99, were established using linear regression models for salvianolic acid B and acetylsalicylic acid and a quadratic model for salicylic acid. The validated method was successfully used to measure salvianolic acid B, acetylsalicylic acid, and salicylic acid concentrations in human plasma samples from 16 patients to observe the pharmacokinetic changes caused by DDIs.
Collapse
|
6
|
Nagaraju K, Chowdary YA, Rao MVB. Development and validation of bexarote by bioanalytical methods using liquid chromatography-tandem mass spectroscopy (LC-MS/MS). FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-020-00155-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Background
The aim of this study was to develop and validate accurate and precise UPLC method with tandem mass spectrometry (Waters) for the determination of bexarotene in human plasma using bexarotene D4 as internal standard (IS).
Results
The retention time of bexarotene was 2.75 ± 0.30 min. The method was validated with respect to system suitability, linearity, accuracy, precision, matrix effect, auto sampler carryover test, and recovery. Linearity was found to be 1.04 to 351.93 μg/mL. LOQQC, LQC, INTQC, MQC, and HQC were found to be 1.0550, 2.7800, 25.2700, 131.61, and 263.23 respectively. The mean percentage recovery was found to be 95.72%
Conclusion
The bioanalytical method, a selective and sensitive liquid chromatography-mass spectrometry method to quantitate bexarotene in K2EDTA human plasma over the concentration range 1.0440 to 351.9320 ng/mL, was successfully validated. This method is suitable for sample analysis to support bioequivalence/bioavailability and/or pharmacokinetic studies involving formulations of bexarotene.
Collapse
|
7
|
Zhou Y, Du B, Kan M, Chen S, Tang BH, Nie AQ, Ye PP, Shi HY, Hao GX, Guo XL, Han QJ, Zheng Y, Zhao W. Drug Elimination Alteration in Acute Lymphoblastic Leukemia Mediated by Renal Transporters and Glomerular Filtration. Pharm Res 2020; 37:158. [PMID: 32743772 DOI: 10.1007/s11095-020-02896-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/27/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Drug elimination alteration has been well reported in acute lymphoblastic leukemia (ALL). Considering that transporters and glomerular filtration influence, to different extents, the drug disposition, and possible side effects, we evaluated the effects of ALL on major renal transporters and glomerular filtration mediated pharmacokinetic changes, as well as expression of renal drug transporters. METHODS ALL xenograft models were established and intravenously injected with substrates of renal transporters and glomerular filtration separately in NOD/SCID mice. The plasma concentrations of substrates, after single doses, were determined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). RESULTS With the development of ALL, protein expression of MDR1, OAT3 and OCT2 were increased by 2.62-fold, 1.70-fold, and 1.45-fold, respectively, whereas expression of MRP2 and MRP4 were significantly decreased by 30.98% and 45.28% in the kidney of ALL groups compared with control groups. Clearance of MDR1-mediated digoxin, OAT3-mediated furosemide, and OCT2-mediated metformin increased by 3.04-fold, 1.47-fold, and 1.26-fold, respectively. However, clearance of MRPs-mediated methotrexate was reduced by 39.5%. These results are consistent with mRNA expression. Clearance of vancomycin and amikacin, as markers of glomerular filtration rate, had a 2.14 and 1.64-fold increase in ALL mice, respectively. CONCLUSIONS The specific alteration of renal transporters and glomerular filtration in kidneys provide a rational explanation for changes in pharmacokinetics for ALL.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bin Du
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Kan
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shang Chen
- Institute of Biochemical and Biotechnological Drug, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo-Hao Tang
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ai-Qing Nie
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Pan-Pan Ye
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Hai-Yan Shi
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Guo-Xiang Hao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiu-Ju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wei Zhao
- Department of Clinical Pharmacy, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
8
|
Two validated stability-indicating chromatographic methods for the separation of two anti-hypertensive combinations in the presence of their degradation products or impurities. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Courlet P, Spaggiari D, Desfontaine V, Cavassini M, Alves Saldanha S, Buclin T, Marzolini C, Csajka C, Decosterd LA. UHPLC-MS/MS assay for simultaneous determination of amlodipine, metoprolol, pravastatin, rosuvastatin, atorvastatin with its active metabolites in human plasma, for population-scale drug-drug interactions studies in people living with HIV. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121733. [PMID: 31374423 DOI: 10.1016/j.jchromb.2019.121733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/02/2019] [Accepted: 07/24/2019] [Indexed: 11/17/2022]
Abstract
Thanks to highly active antiretroviral treatments, HIV infection is now considered as a chronic condition. Consequently, people living with HIV (PLWH) live longer and encounter more age-related chronic co-morbidities, notably cardiovascular diseases, leading to polypharmacy. As the management of drug-drug interactions (DDIs) constitutes a key aspect of the care of PLWH, the magnitude of pharmacokinetic DDIs between cardiovascular and anti-HIV drugs needs to be more thoroughly characterized. To that endeavour, an UHPLC-MS/MS bioanalytical method has been developed for the simultaneous determination in human plasma of amlodipine, metoprolol, pravastatin, rosuvastatin, atorvastatin and its active metabolites. Plasma samples were subjected to protein precipitation with methanol, followed by evaporation at room temperature under nitrogen of the supernatant, allowing to attain measurable plasma concentrations down to sub-nanogram per milliliter levels. Stable isotope-labelled analytes were used as internal standards. The five drugs and two metabolites were analyzed using a 6-min liquid chromatographic run coupled to electrospray triple quadrupole mass spectrometry detection. The method was validated over the clinically relevant concentrations ranging from 0.3 to 480 ng/mL for amlodipine, atorvastatin and p-OH-atorvastatin, and 0.4 to 480 ng/mL for pravastatin, 0.5 to 480 ng/mL for rosuvastatin and o-OH-atorvastatin, and 3 to 4800 ng/mL for metoprolol. Validation performances such as trueness (95.4-110.8%), repeatability (1.5-13.4%) and intermediate precision (3.6-14.5%) were in agreement with current international recommendations. Accuracy profiles (total error approach) were lying within the limits of ±30% accepted in bioanalysis. This rapid and robust UHPLC-MS/MS assay allows the simultaneous quantification in plasma of the major currently used cardiovascular drugs and offers an efficient analytical tool for clinical pharmacokinetics as well as DDIs studies.
Collapse
Affiliation(s)
- Perrine Courlet
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Dany Spaggiari
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Vincent Desfontaine
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Susana Alves Saldanha
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Thierry Buclin
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Catia Marzolini
- Departments of Medicine and Clinical Research, University Hospital of Basel and University of Basel, Switzerland.
| | - Chantal Csajka
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland; School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Switzerland.
| | - Laurent-Arthur Decosterd
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland.
| |
Collapse
|
10
|
Vicagrel enhances aspirin-induced inhibition of both platelet aggregation and thrombus formation in rodents due to its decreased metabolic inactivation. Biomed Pharmacother 2019; 115:108906. [DOI: 10.1016/j.biopha.2019.108906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/22/2019] [Indexed: 02/07/2023] Open
|
11
|
Zheng W, Yoo KH, Abd El-Aty A, Park DH, Choi JM, Kim SK, Kang YS, Zhang H, Hacımüftüoğlu A, Bekhit AED, Wang J, Shim JH, Shin HC. Quantitative determination of carbasalate calcium derived metabolites, acetylsalicylic acid and salicylic acid, in six animal foods using liquid-liquid extraction method coupled with liquid chromatography-tandem mass spectrometry. Food Chem 2019; 278:744-750. [DOI: 10.1016/j.foodchem.2018.11.118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/10/2023]
|
12
|
Rakibe U, Tiwari R, Rane V, Wakte P. UPLC, HR-MS, and in-silico tools for simultaneous separation, characterization, and in-silico toxicity prediction of degradation products of atorvastatin and olmesartan. ACTA CHROMATOGR 2019. [DOI: 10.1556/1326.2017.00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- U. Rakibe
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - R. Tiwari
- Department of Pharmaceutical Sciences, SVKM's NMIMS, Shirpur, Dist. Dhule, Maharashtra, India
| | - V. Rane
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| | - P. Wakte
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, India
| |
Collapse
|
13
|
HPLC-high-resolution mass spectrometry with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay. Bioanalysis 2018; 10:659-671. [PMID: 29749249 DOI: 10.4155/bio-2018-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
AIM Evaluation of HPLC-high-resolution mass spectrometry (HPLC-HRMS) full scan with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay. MATERIALS & METHODS Microsomal incubates were analyzed using a high resolution and high mass accuracy Q-Exactive mass spectrometer to collect integrated qualitative and quantitative (qual/quant) data. RESULTS Within assay, positive-to-negative polarity switching HPLC-HRMS method allowed quantification of eight and two probe compounds in the positive and negative ionization modes, respectively, while monitoring for LOR and its metabolites. CONCLUSION LOR-inhibited CYP2C19 and showed higher activity for CYP2D6, CYP2E1 and CYP3A4. Overall, LC-HRMS-based nontargeted full scan quantitation allowed to improve the throughput of the in vitro cocktail drug-drug interaction assay.
Collapse
|
14
|
Elkady EF, Tammam MH, El Maaty AA. A comparative study of HPLC-UV and UPLC-DAD methods for simultaneous estimation of aspirin and cilostazol in the presence of their related impurities in bulk and capsules. J LIQ CHROMATOGR R T 2017. [DOI: 10.1080/10826076.2017.1296461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ehab Farouk Elkady
- Department Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Marwa Hosny Tammam
- Bioavailability Center Lab, National Organization for Drug Control and Research, Giza, Egypt
| | - Ayman Abo El Maaty
- Miscellaneous Pharmaceutical Preparations Lab, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
15
|
Shormanov VK, Chupak VV, Pobedonstseva MN, Maslov SV, Kibets NA, Tikhopoeva NN. [The forensic chemical investigation of acetylsalicylic acid]. Sud Med Ekspert 2016; 58:37-43. [PMID: 26856059 DOI: 10.17116/sudmed201558637-43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The objective of the present study was to develop the universal approach to the quantitative determination of acetylsalicylic acid in biological tissues and fluids to be applied in the practice of forensic chemical expertise with the use of thin-layer chromatography, gas chromatography and mass spectrometry, low-pressure column chromatography, and spectrophotometry. A system of solvents consisting of acetone and ethyl acetate (7:3) was proposed as a universal agent for extracting acetylsalicylic acid from the cadaveric tissues and blood. It was shown that acetylsalicylic acid and its principal metabolite, salicylic acid, can be purified from the endogenous admixtures present in the biological materials by column chromatography on silica gel L 40/100 mcm. Salicylic acid in extracts from biological materials was identified and quantified with the use of thin-layer chromatography, gas chromatography/mass spectrometry, and electronic spectrophotometry. The method for forensic chemical investigation of acetylsalicylic acid has been developed and applied in the analysis of the material provided for expertise.
Collapse
Affiliation(s)
| | - V V Chupak
- Orel State University, Orel, Russia, 302028
| | | | - S V Maslov
- Kursk Regional Bureau of Forensic Medical Expertise, Kursk, Russia, 305000
| | - N A Kibets
- Kursk State University, Kursk, Russia, 305041
| | - N N Tikhopoeva
- Kursk Regional Bureau of Forensic Medical Expertise, Kursk, Russia, 305000
| |
Collapse
|
16
|
Ahmed TA, Alharby YA, El-Helw ARM, Hosny KM, El-Say KM. Depot injectable atorvastatin biodegradable in situ gel: development, optimization, in vitro, and in vivo evaluation. Drug Des Devel Ther 2016; 10:405-15. [PMID: 26855565 PMCID: PMC4725642 DOI: 10.2147/dddt.s98078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study aimed to develop an optimized depot injectable atorvastatin (ATR) biodegradable in situ gel (ISG) system with minimum initial burst using a central composite design. The factors selected were poly (d, l-lactide-co-glycolide) (PLGA) concentration (X1), molecular weight of polyethylene glycol (PEG) (X2), and PEG concentration (X3). The independent variables were the initial burst of ATR after 2 (Y1) and 24 hours (Y2). The optimized formulation was investigated using scanning electron microscopy, Fourier transform infrared spectroscopy, and in vitro drug release in phosphate-buffered saline of pH 7.4 for 72 hours. The in vivo pharmacokinetic study of the optimized ATR-ISG and the corresponding PEG-free ATR-ISG were conducted by intramuscular injection of a single dose (2 mg/kg) of ATR in male New Zealand White rabbits. A double-blind, randomized, parallel design was used in comparison with those of the marketed ATR tablet. Statistical analysis revealed that PLGA concentration and the molecular weight of PEG have pronounced effects on both Y1 and Y2. The optimized formulation was composed of 36.10% PLGA, PEG 6000, and 15.69% PEG, and exhibited characteristic in vitro release pattern with minimal initial burst. Incorporation of PEG in the formulation causes a slight decrease in the glass transition temperature value of PLGA, leading to a slight change in Fourier transform infrared spectroscopy spectrum due to possible interaction. Moreover, scanning electron microscopy photomicrograph showed smooth surface with disappearance of the cracks which characterize the surface of PEG-free formulation. The pharmacokinetic data for the optimized depot injectable ATR-ISG showed a significant (P<0.05) decrease in maximum plasma concentration from 547.62 to 346.84 ng/mL, and increasing time to reach the maximum plasma concentration from 12 to 72 hours in comparison with the marketed tablet. The optimized ATR-ISG formulation has shown minimal initial drug burst which confirms the suitability of the ISG system in the prolongation of drug release in patients with chronic long-term therapy.
Collapse
Affiliation(s)
- Tarek A Ahmed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Yasser A Alharby
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdel-Rahim M El-Helw
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Khalid M El-Say
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Danafar H, Hamidi M. Pharmacokinetics and Bioequivalence Study of Amlodipine and Atorvastatin in Healthy Male Volunteers by LC-MS. PHARMACEUTICAL SCIENCES 2015. [DOI: 10.15171/ps.2015.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
18
|
Ponnayyan Sulochana S, Ravichandiran V, Mullangi R, Sukumaran SK. Highly Sensitive LC-MS-MS Method for the Determination of Tacrine in Rat Plasma: Application to Pharmacokinetic Studies in Rats. J Chromatogr Sci 2015; 54:397-404. [PMID: 26561498 DOI: 10.1093/chromsci/bmv155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Indexed: 11/14/2022]
Abstract
A rapid and highly sensitive assay method has been developed and validated for the estimation of tacrine in rat plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the positive-ion mode. The assay procedure involves a simple liquid-liquid extraction of tacrine and phenacetin (internal standard, IS) from rat plasma using ethyl acetate. Chromatographic separation was achieved with 0.2% formic acid : acetonitrile (30 : 70, v/v) at a flow rate of 0.50 mL/min on an Atlantis dC18 column with a total run time of 3.0 min. The MS-MS ion transitions monitored were 199.10 → 171.20 for tacrine and 180.10 → 110.10 for IS. Method validation was performed as per United States Food and Drug Administration (US FDA) guidelines and the results met the acceptance criteria. The lower limit of quantification achieved was 0.008 ng/mL and linearity was observed from 0.008 to 53.4 ng/mL. The intra- and inter-day precision was in the range of 2.76-12.5 and 5.15-12.8%, respectively. This novel method has been applied to a pharmacokinetic study in rats.
Collapse
Affiliation(s)
- Suresh Ponnayyan Sulochana
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies (VISTAS), Vels University, Chennai 600117, India
| | - Vishnuvardh Ravichandiran
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies (VISTAS), Vels University, Chennai 600117, India
| | - Ramesh Mullangi
- Jubilant Biosys Ltd, Industrial Suburb, Yeshwanthpur, Bangalore 560 022, India
| | - Sathesh Kumar Sukumaran
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Vels Institute of Science Technology and Advanced Studies (VISTAS), Vels University, Chennai 600117, India
| |
Collapse
|
19
|
Spampatti M, Vlotides G, Spöttl G, Maurer J, Göke B, Auernhammer CJ. Aspirin inhibits cell viability and mTOR downstream signaling in gastroenteropancreatic and bronchopulmonary neuroendocrine tumor cells. World J Gastroenterol 2014; 20:10038-10049. [PMID: 25110431 PMCID: PMC4123333 DOI: 10.3748/wjg.v20.i29.10038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of aspirin on neuroendocrine tumor (NET) cell growth and signaling in vitro.
METHODS: Human pancreatic BON1, bronchopulmonary NCI-H727 and midgut GOT1 neuroendocrine tumor cells were treated with different concentrations of aspirin (from 0.001 to 5 mmol/L), and the resulting effects on metabolic activity/cell proliferation were measured using cell proliferation assays and SYBR-DNA-labeling after 72, 144 and 216 h of incubation. The effects of aspirin on the expression and phosphorylation of several critical proteins that are involved in the most common intracellular growth factor signaling pathways (especially Akt protein kinase B) and mammalian target of rapamycin (mTOR) were determined by Western blot analyses. Propidium iodide staining and flow cytometry were used to evaluate changes in cell cycle distribution and apoptosis. Statistical analysis was performed using a 2-tailed Student’s t-test to evaluate the proliferation assays and cell cycle analyses. The results are expressed as the mean ± SD of 3 or 4 independently performed experiments. Statistical significance was set at P < 0.05.
RESULTS: Treatment with aspirin suppressed the viability/proliferation of BON1, NCI-H727 and GOT1 cells in a time- and dose-dependent manner. Significant effects were observed at starting doses of 0.5-1 mmol/L and peaked at 5 mmol/L. For instance, after treatment with 1 mmol/L aspirin for 144 h, the viability of pancreatic BON1 cells decreased to 66% ± 13% (P < 0.05), the viability of bronchopulmonary NCI-H727 cells decreased to 53% ± 8% (P < 0.01) and the viability of midgut GOT1 cells decreased to 89% ± 6% (P < 0.01). These effects were associated with a decreased entry into the S phase, the induction of the cyclin-dependent kinase inhibitor p21 and reduced expression of cyclin-dependent kinase 4 and cyclin D3. Aspirin suppressed mTOR downstream signaling, evidenced by the reduced phosphorylation of the mTOR substrates 4E binding protein 1, serine/threonine kinase P70S6K and S6 ribosomal protein and inhibited glycogen synthase kinase 3 activity. We observed the (compensatory) activation of tuberous sclerosis 2, the serine/threonine specific protein kinase AKT and extracellular signal-regulated kinases.
CONCLUSION: Aspirin demonstrates promising anticancer properties for NETs in vitro. Further preclinical and clinical studies are needed.
Collapse
|
20
|
Use of polarity switching for the simultaneous bioanalysis of analytes with three orders of magnitude difference in concentration by LC-MS/MS. Bioanalysis 2013; 5:1911-8. [PMID: 23905864 DOI: 10.4155/bio.13.142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The challenge of quantifying two compounds in a single assay with drastic dynamic ranges is to obtain linearity without source or detector saturation at the mass spectrometer. RESULTS In positive-ionization mode, the nonlinear relationships for Desmethyl Mebeverine Acid (DMAC) were demonstrated using three common strategies to overcome this issue: using offset voltage parameters, less-sensitive product ion or 13C mass SRM transitions. On the contrary, nonlinear relationships for DMAC were overcome if negative-ionization mode was used. Due to Mebeverine analytical LLOQ, dilution was not suitable for a single assay of Mebeverine and DMAC. However, polarity switching in negative mode for DMAC was successfully found to compensate for the nonlinearity at the mass spectrometer while preserving Mebeverine linear regression model in positive mode. CONCLUSION The polarity switching strategy has demonstrated the advantage of improving linearity for analytes having different ionization polarities and three orders of magnitude difference in concentration.
Collapse
|