1
|
Gabrič A, Hodnik Ž, Pajk S. Oxidation of Drugs during Drug Product Development: Problems and Solutions. Pharmaceutics 2022; 14:pharmaceutics14020325. [PMID: 35214057 PMCID: PMC8876153 DOI: 10.3390/pharmaceutics14020325] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidation is the second most common degradation pathway for pharmaceuticals, after hydrolysis. However, in contrast to hydrolysis, oxidation is mechanistically more complex and produces a wider range of degradation products; oxidation is thus harder to control. The propensity of a drug towards oxidation is established during forced degradation studies. However, a more realistic insight into degradation in the solid state can be achieved with accelerated studies of mixtures of drugs and excipients, as the excipients are the most common sources of impurities that have the potential to initiate oxidation of a solid drug product. Based on the results of these studies, critical parameters can be identified and appropriate measures can be taken to avoid the problems that oxidation poses to the quality of a drug product. This article reviews the most common types of oxidation mechanisms, possible sources of reactive oxygen species, and how to minimize the oxidation of a solid drug product based on a well-planned accelerated study.
Collapse
Affiliation(s)
- Alen Gabrič
- Krka d.d., R&D, Šmarješka Cesta 6, 8001 Novo Mesto, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Žiga Hodnik
- Krka d.d., R&D, Šmarješka Cesta 6, 8001 Novo Mesto, Slovenia;
- Correspondence: (Ž.H.); (S.P.)
| | - Stane Pajk
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
- Correspondence: (Ž.H.); (S.P.)
| |
Collapse
|
2
|
Shah M, Patel N, Tripathi N, Vyas VK. Capillary electrophoresis methods for impurity profiling of drugs: A review of the past decade. J Pharm Anal 2021; 12:15-28. [PMID: 35573874 PMCID: PMC9073252 DOI: 10.1016/j.jpha.2021.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 06/02/2021] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
Capillary electrophoresis (CE) is widely used for the impurity profiling of drugs that contain stereochemical centers in their structures, analysis of biomolecules, and characterization of biopharmaceuticals. Currently, CE is the method of choice for the analysis of foodstuffs and the determination of adulterants. This article discusses the general theory and instrumentation of CE as well as the classification of various CE techniques. It also presents an overview of research on the applications of different CE techniques in the impurity profiling of drugs in the past decade. The review briefly presents a comparison between CE and liquid chromatography methods and highlights the strengths of CE using drug compounds as examples. This review will help scientists, fellow researchers, and students to understand the applications of CE techniques in the impurity profiling of drugs. An overview of research related to the use of capillary electrophoresis in the impurity profiling of drugs is presented. The principle, instrumentation, and different types of capillary electrophoresis (CE) methods are outlined here. Applications of different of CE methods with the chemical structures of drugs and their impurities are highlighted. A brief description is also provided on the analysis of Pharmacopeial monographs using CE methods. A comparison of CE with liquid chromatography for impurity profiling and analysis of drugs is presented in this review.
Collapse
|
3
|
Pasquini B, Orlandini S, Villar-Navarro M, Caprini C, Del Bubba M, Douša M, Giuffrida A, Gotti R, Furlanetto S. Chiral capillary zone electrophoresis in enantioseparation and analysis of cinacalcet impurities: Use of Quality by Design principles in method development. J Chromatogr A 2018; 1568:205-213. [PMID: 30005942 DOI: 10.1016/j.chroma.2018.07.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 01/08/2023]
Abstract
A capillary electrophoresis method for the simultaneous determination of the enantiomeric purity and of impurities of the chiral calcimimetic drug cinacalcet hydrochloride has been developed following Quality by Design principles. The scouting phase was aimed to select the separation operative mode and to identify a suitable chiral selector. Among the tested cyclodextrins, (2-carboxyethyl)-β-cyclodextrin and (2-hydroxypropyl)-γ-cyclodextrin (HPγCyD) showed good chiral resolving capabilities. The selected separation system was solvent-modified capillary zone electrophoresis with the addition of HPγCyD and methanol. Voltage, buffer pH, methanol concentration and HPγCyD concentration were investigated as critical method parameters by a multivariate strategy. Critical method attributes were represented by enantioresolution and analysis time. A Box-Behnken Design allowed the contour plots to be drawn and quadratic and interaction effects to be highlighted. The Method Operable Design Region (MODR) was identified by applying Monte-Carlo simulations and corresponded to the multidimensional zone where both the critical method attributes fulfilled the requirements with a desired probability π≥90%. The working conditions, with the MODR limits, corresponded to the following: capillary length, 48.5cm; temperature, 18°C; voltage, 26kV (26-27kV); background electrolyte, 150mM phosphate buffer pH 2.70 (2.60-2.80), 3.1mM (3.0-3.5mM) HPγCyD; 2.00% (0.00-8.40%) v/v methanol. Robustness testing was carried out by a Plackett-Burman matrix and finally a method control strategy was defined. The complete separation of the analytes was obtained in about 10min. The method was validated following the International Council for Harmonisation guidelines and was applied for the analysis of a real sample of cinacalcet hydrochloride tablets.
Collapse
Affiliation(s)
- Benedetta Pasquini
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - Serena Orlandini
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy.
| | - Mercedes Villar-Navarro
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, 41012, Seville, Spain
| | - Claudia Caprini
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - Massimo Del Bubba
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - Michal Douša
- Zentiva, K.S. Praha, a Sanofi Company, U Kabelovny 130, 102 37, Praha 10, Czech Republic
| | - Alessandro Giuffrida
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125, Catania, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Sandra Furlanetto
- Department of Chemistry "U. Schiff", University of Florence, Via U. Schiff 6, Via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
4
|
Thomson K, Hutchinson DJ, Chablani L. Stability of extemporaneously prepared cinacalcet oral suspensions. Am J Health Syst Pharm 2018; 75:e236-e240. [PMID: 29691267 DOI: 10.2146/ajhp170072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The stability of extemporaneously prepared cinacalcet suspensions over 90 days was evaluated. METHODS Cinacalcet 5-mg/mL suspension was prepared by triturating 30-mg cinacalcet tablets. Twelve 30-mL batches were prepared with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF (sugar free). Three suspensions of each kind were stored at both room temperature and refrigerated conditions. A 1-mL sample was taken from each bottle at 0, 7, 18, 32, 64, and 90 days. Each sample was assayed using high-performance liquid chromatography (HPLC). A new HPLC method for evaluating drug peaks of pure cinacalcet was developed. Stability was defined as retention of at least 90% of the initial drug concentration. RESULTS The HPLC method established in this study serves as a novel assay for evaluating cinacalcet oral suspensions. For all suspensions tested at individual conditions, the concentration remained above 90% of the initial concentration for 90 days of storage with the exception of Ora-Plus and Ora-Sweet SF suspensions stored under refrigeration, which were stable for 64 days. Usual sedimentation of the suspensions occurred over time but resolved with agitation; there was no other change in visual appearance of the suspensions over the course of the 90-day study. The color and odor of the suspensions throughout the study remained unchanged with respect to the initial time point. CONCLUSION Extemporaneously compounded cinacalcet 5-mg/mL oral suspensions prepared with a 1:1 mixture of Ora-Plus and either Ora-Sweet or Ora-Sweet SF and stored in 2-oz amber polypropylene plastic bottles were stable for at least 64 days at room temperature and under refrigeration.
Collapse
Affiliation(s)
- Kara Thomson
- Wegmans School of Pharmacy, St. John Fisher College, Rochester, NY
| | - David J Hutchinson
- Department of Pharmacy Practice, Wegmans School of Pharmacy, St. John Fisher College, Rochester, NY
| | - Lipika Chablani
- Department of Pharmaceutical Sciences, Wegmans School of Pharmacy, St. John Fisher College, Rochester, NY
| |
Collapse
|